矩阵求导链式法则学习

本文介绍了矩阵求导计算公式,特别是在深度学习中如何应用这一法则,特别是对于变量多次出现的情况。通过示例解释了在自动编码器和卷积神经网络中的权值共享模型中的导数计算。此外,详细探讨了Batch Normalization的求导过程,强调了矩阵求导链式法则的重要性,即先求导再做线性变换等于先做线性变换再求导,同时需要遵循维度相容原则。
摘要由CSDN通过智能技术生成

矩阵求导计算公式

前要:变量多次出现的求导法则:若某个变量在函数表达式中多次出现,可以单独计算函数对自变量的每一次出现的导数,再把结果加起来。用计算图来描述本条法则,就是:若变量x有多条影响函数f的值的路径,则计算时需要对每条路径经求导再加和。

例:,可以先把三个x看做三个不同的变量,即,然后分别求导得,,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值