深度学习模型评估性能指标(一文读懂)

深度学习

评价指标

T/F:预测是正确的还是错误的
P/N:预测结果是正例还是负例
TP:正确正例,预测为正,真实为正
FN:错误负例,预测错误,预测为负,真实为正
FP:错误正例,预测错误,预测为正,真实是负
TN:正确负例,预测正确,预测是负,真实为负

准确率

样本不均衡的情况下会失效,例如一个病患病率0.4%,则告诉所有患者都没患病,则检查的准确率为96.6%
A c c u r a c y = T P + T N T P + T N + F P + F N Accuracy =\frac{TP+TN}{TP+TN+FP+FN} Accuracy=TP+TN+FP+FNTP+TN

查准率(精确率)

宁可漏检,不可错,极端情况100个样本随意分布正负,确定其中一个一定为正的预测为正其他都预测为负,则查准率100%,适用于要求预测(为正的)一定别错的场景
P r e c i s i o n = T P T P + F P Precision =\frac{TP}{TP+FP} Precision=TP+FPTP

查全率(召回率)

宁可错杀一千,不可放过一个,极端情况,所有都预测为正,召回率100%,适用于尽力的预测出所有的(正样本)结果
R e c a l l = T P T P + F N Recall =\frac{TP}{TP+FN} Recall=TP+FNTP

F-Score

权衡召回率和查准率,Beta为1,二者一样重要,小于1查准率重要,大于1召回率重要
F S c o r e = ( 1 + β 2 ) P r e c i s i o n ⋅ R e c a l l β 2 ⋅ P r e c i s i o n + R e c a l l F_{Score} =(1+\beta^2)\frac{Precision\cdot{Recall}}{\beta^2\cdot{Precision}+{Recall}} FScore=(1+β2)β2Precision+RecallPrecisionRecall

PR曲线

  • 查全率为横坐标,查准率为纵坐标的曲线
  • 将预测结果按预测分数从大到小排序,随着统计结果数量的上升,召回率一定会逐渐变大,观察查准率的变化,得到PR曲线
    图片来源
    图片来源
绘制PR曲线
  1. 将预测结果按照分数,从大到小排序
序号预测结果真实结果
111
200
311
401
510
610
701
811
911
  1. 随着统计数量的上升,计算查准率,查全率
统计数量查准率查全率
11/11/6
21/11/6
32/22/6
42/22/6
52/32/6
62/42/6
72/42/6
83/53/6
94/64/6
  1. 绘制曲线
    在这里插入图片描述
求AP

2007年提出的AP计算方法(TREC style sampling),通过特殊的插值找到Recall为[0,0.1,0.2…1]处对应的Precision值,共11个,求平均
2010年后AP计算定义为经过插值的precision-recall曲线与X轴包络的面积。这种方式称为:AUC (Area under curve)

A P = ∑ i = 1 n − 1 ( r i + 1 − r i ) p i n t e r p ( r i + 1 ) A P=\sum_{i=1}^{n-1}\left(r_{i+1}-r_i\right) p_{i n t e r p}\left(r_{i+1}\right) AP=i=1n1(ri+1ri)pinterp(ri+1)
r1,r2,…,rn是按升序排列的Precision插值段第一个插值处对应的recall值。公式引用自

  • 定义最大查准率(上述插值的recall值)为
    P r e c i s i o n ∗ ( i ) = P r e c i s i o n ( t ) , ( t > i ) Precision^*(i)=Precision(t), (t>i) Precision(i)=Precision(t),(t>i)
    i i i表示横坐标查全率
  1. 求最大查准率
统计数量查准率查全率最大查准率
11/11/61
21/11/61
32/22/61
42/22/62/3
52/32/62/3
62/42/62/3
72/42/62/3
83/53/62/3
94/64/62/3
  1. 绘制新曲线,横坐标为查全率,纵坐标为最大查准率
    在这里插入图片描述

  2. 计算AP值

  • 2007年方法
    A P = 1 11 ⋅ ( 1 + 1 + 1 + 1 + 2 3 + 2 3 + 2 3 + 0 + 0 + 0 + 0 ) = 6 11 = 54.5 % AP=\frac{1}{11}\cdot(1+1+1+1+\frac{2}{3}+\frac{2}{3}+\frac{2}{3}+0+0+0+0)=\frac{6}{11}=54.5\% AP=111(1+1+1+1+32+32+32+0+0+0+0)=116=54.5%
  • 2010年方法
    A P = 1 3 ⋅ 1 + 1 3 ⋅ 2 3 = 5 9 = 55.6 % AP=\frac{1}{3}\cdot1+\frac{1}{3}\cdot\frac{2}{3}=\frac{5}{9}=55.6\% AP=311+3132=95=55.6%
  1. 代码参考
    代码参考
mAP

所有类的AP值求平均
m A P = ∑ i ∈ c l a s s A P i mAP=\sum_{i\in{class}}AP_i mAP=iclassAPi

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值