深度学习
评价指标
T/F:预测是正确的还是错误的
P/N:预测结果是正例还是负例
TP:正确正例,预测为正,真实为正
FN:错误负例,预测错误,预测为负,真实为正
FP:错误正例,预测错误,预测为正,真实是负
TN:正确负例,预测正确,预测是负,真实为负
准确率
样本不均衡的情况下会失效,例如一个病患病率0.4%,则告诉所有患者都没患病,则检查的准确率为96.6%
A
c
c
u
r
a
c
y
=
T
P
+
T
N
T
P
+
T
N
+
F
P
+
F
N
Accuracy =\frac{TP+TN}{TP+TN+FP+FN}
Accuracy=TP+TN+FP+FNTP+TN
查准率(精确率)
宁可漏检,不可错,极端情况100个样本随意分布正负,确定其中一个一定为正的预测为正其他都预测为负,则查准率100%,适用于要求预测(为正的)一定别错的场景
P
r
e
c
i
s
i
o
n
=
T
P
T
P
+
F
P
Precision =\frac{TP}{TP+FP}
Precision=TP+FPTP
查全率(召回率)
宁可错杀一千,不可放过一个,极端情况,所有都预测为正,召回率100%,适用于尽力的预测出所有的(正样本)结果
R
e
c
a
l
l
=
T
P
T
P
+
F
N
Recall =\frac{TP}{TP+FN}
Recall=TP+FNTP
F-Score
权衡召回率和查准率,Beta为1,二者一样重要,小于1查准率重要,大于1召回率重要
F
S
c
o
r
e
=
(
1
+
β
2
)
P
r
e
c
i
s
i
o
n
⋅
R
e
c
a
l
l
β
2
⋅
P
r
e
c
i
s
i
o
n
+
R
e
c
a
l
l
F_{Score} =(1+\beta^2)\frac{Precision\cdot{Recall}}{\beta^2\cdot{Precision}+{Recall}}
FScore=(1+β2)β2⋅Precision+RecallPrecision⋅Recall
PR曲线
- 查全率为横坐标,查准率为纵坐标的曲线
- 将预测结果按预测分数从大到小排序,随着统计结果数量的上升,召回率一定会逐渐变大,观察查准率的变化,得到PR曲线
图片来源
绘制PR曲线
- 将预测结果按照分数,从大到小排序
序号 | 预测结果 | 真实结果 |
---|---|---|
1 | 1 | 1 |
2 | 0 | 0 |
3 | 1 | 1 |
4 | 0 | 1 |
5 | 1 | 0 |
6 | 1 | 0 |
7 | 0 | 1 |
8 | 1 | 1 |
9 | 1 | 1 |
- 随着统计数量的上升,计算查准率,查全率
统计数量 | 查准率 | 查全率 |
---|---|---|
1 | 1/1 | 1/6 |
2 | 1/1 | 1/6 |
3 | 2/2 | 2/6 |
4 | 2/2 | 2/6 |
5 | 2/3 | 2/6 |
6 | 2/4 | 2/6 |
7 | 2/4 | 2/6 |
8 | 3/5 | 3/6 |
9 | 4/6 | 4/6 |
- 绘制曲线
求AP
2007年提出的AP计算方法(TREC style sampling),通过特殊的插值找到Recall为[0,0.1,0.2…1]处对应的Precision值,共11个,求平均
2010年后AP计算定义为经过插值的precision-recall曲线与X轴包络的面积。这种方式称为:AUC (Area under curve)
A
P
=
∑
i
=
1
n
−
1
(
r
i
+
1
−
r
i
)
p
i
n
t
e
r
p
(
r
i
+
1
)
A P=\sum_{i=1}^{n-1}\left(r_{i+1}-r_i\right) p_{i n t e r p}\left(r_{i+1}\right)
AP=i=1∑n−1(ri+1−ri)pinterp(ri+1)
r1,r2,…,rn是按升序排列的Precision插值段第一个插值处对应的recall值。公式引用自
- 定义最大查准率(上述插值的recall值)为
P r e c i s i o n ∗ ( i ) = P r e c i s i o n ( t ) , ( t > i ) Precision^*(i)=Precision(t), (t>i) Precision∗(i)=Precision(t),(t>i)
i i i表示横坐标查全率
- 求最大查准率
统计数量 | 查准率 | 查全率 | 最大查准率 |
---|---|---|---|
1 | 1/1 | 1/6 | 1 |
2 | 1/1 | 1/6 | 1 |
3 | 2/2 | 2/6 | 1 |
4 | 2/2 | 2/6 | 2/3 |
5 | 2/3 | 2/6 | 2/3 |
6 | 2/4 | 2/6 | 2/3 |
7 | 2/4 | 2/6 | 2/3 |
8 | 3/5 | 3/6 | 2/3 |
9 | 4/6 | 4/6 | 2/3 |
-
绘制新曲线,横坐标为查全率,纵坐标为最大查准率
-
计算AP值
- 2007年方法
A P = 1 11 ⋅ ( 1 + 1 + 1 + 1 + 2 3 + 2 3 + 2 3 + 0 + 0 + 0 + 0 ) = 6 11 = 54.5 % AP=\frac{1}{11}\cdot(1+1+1+1+\frac{2}{3}+\frac{2}{3}+\frac{2}{3}+0+0+0+0)=\frac{6}{11}=54.5\% AP=111⋅(1+1+1+1+32+32+32+0+0+0+0)=116=54.5% - 2010年方法
A P = 1 3 ⋅ 1 + 1 3 ⋅ 2 3 = 5 9 = 55.6 % AP=\frac{1}{3}\cdot1+\frac{1}{3}\cdot\frac{2}{3}=\frac{5}{9}=55.6\% AP=31⋅1+31⋅32=95=55.6%
- 代码参考
代码参考
mAP
所有类的AP值求平均
m
A
P
=
∑
i
∈
c
l
a
s
s
A
P
i
mAP=\sum_{i\in{class}}AP_i
mAP=i∈class∑APi