FCN,Unet , Segnet,RefineNet,PSPNet,Deeplab v1&v2&v3、ERFNET
图像分割问题可以理解为聚类问题。
图像分割任务的本质是像素级别的分类。
深度学习来做图像分割需要考虑的因素(实际上所有算法都应该考虑):
(1)资源,就是达到某种分割效果所需要的算法复杂度。
(2)效果,算法最终的分割效果达到了什么程度。
(3)效率,即分割一帧图片需要的时间。
从算法本质来看,追求的是利用算法达成某个目标的性价比,即性能和资源(代价)的一个平衡。脱离某一方面,去谈另一方面都是没有任何意义的。
进一步而言,产品迭代的过程也是如此,先要满足性能,然后开始考虑成本。
例如:手机的发展历史,一开始是BB机,然后是大哥大,接着是小灵通,最后是智能手机,以及后来的触屏手机。
这些分割网络的基础是CNN。
注:分割网络的预测是基于像素点的预测。
如何才能使像素预测更加准确?
方法一:
本文详细介绍了深度学习在图像分割领域的进展,特别是FCN、Segnet、RefineNet、PSPNet和Deeplab系列网络。重点讨论了PSPNet的金字塔场景解析模块,该模块通过多尺度特征组合和全局信息融合,提高了像素预测的准确性。此外,文章还探讨了各种网络结构的优缺点和应用场景。
订阅专栏 解锁全文
304

被折叠的 条评论
为什么被折叠?



