DeepSort多目标跟踪训练自己的数据集

目录

1、用YOLOv5训练自己的检测模型

2.训练跟踪网络

2.1训练跟踪网络的数据集准备

2.2利用数据集训练跟踪权重 

3、利用训练的跟踪权重进行评估

3.1对MOT-16代码进行评估

3.1.1下载下载TrackEval代码

3.1.2生成跟踪文本

3.1.3得到MOT16训练集跟踪结果


 

1、用YOLOv5训练自己的检测模型
 

 这里就不细讲了

2.训练跟踪网络

    代码解压打开如下图:

 文件夹介绍: 

deep_sort_pytorch:跟踪训练部分的代码

inference:后续跟踪检测时保存结果的文件夹

MOT16_eval:评估MOT16数据的脚本

video:保存的测试视频

weights:保存的YOLOv5 5.0版本的权重

yolov5:yolov5相关的部分代码

2.1训练跟踪网络的数据集准备

 以Market-1501为例,该数据集包含了751个类别行人(即train和test文件夹下方各有751文件夹,下格式图仅写了'0002'为例子),按照下面方式存放数据集:(代码里会给出划分好的数据,想训练其他数据集按照下面格式存放图片就行)

--Market-1501

                --test

                        --0002(0002是文件夹名称,下面存放视频连续帧的图片)

                --train

                        --0002(0002是文件夹名称,下面存放视频连续帧的图片)

 数据集在代码中的位置如图:

2.2利用数据集训练跟踪权重 

 在开始训练我们自己数据集的权重之前,我们打开pycharm左下角的命令终端,输入如下的命令pip install -r requirements.txt,就可以对相应环境安装了。

所需的环境安装好了之后,在根目录打开deep_sort_pytorch/ deep_sort/ deep/ train.py文件

  1、只需要修改该train.py下第14行代码,存放数据集路径,要放绝对路径。(其他参数默认就行)如下图

 2、第197行,修改数字‘300’,改成自己训练的轮数。

  3、然后直接运行train.py就可以训练了。训练结束后会在deep_sort_pytorch/ deep_sort/ deep/ checkpoint文件夹下生成一个跟踪权重ckpt.t7。(代码中附带了一个预训练跟踪权重) 

3、利用训练的跟踪权重进行评估

打开根目录下track.py.

修改权重路径和测试视频的路径,即可对视频流中的行人进行检测跟踪,并将检测结果保存。

       如图,分别修改268行,设置YOLO权重路径;269行,设置跟踪权重的路径;271行,设置输入视频的路径。检测结果保存在根目录inference/output下。

      !!!在deep_sort_pytorch/configs/deep_sort.yaml里,有个参数MIN_confidence,我设的0.8,你把它改成0.2,0.3就能显示更多检测框()

3.1对MOT-16代码进行评估

      代码自带了一个mot-16评估的脚本,感兴趣的小伙伴可以自行测试,这里不做过多赘婿。

      需要安装GIT软件,安装好了需要配置一下,方法见博客实现pycharm运行.sh文件,配置好了之后在pycharm命令终端输入

./MOT16_eval/eval.sh  

 

脚本命令应该是要下载MOT-16数据集,这个过程可能会很久,有兴趣的去原作者mikel-brostrom/GitHub研究。

     这里给出一个参考其他博主的方法王定邦,大家可以参考一下。

     需要准备两个部分:

 1.下载TrackEval-master代码(后面我给出整理好的代码)

 2.利用自己训练权重的跑出跟踪文件TXT文本(后面将展示如何保存)

 

3.1.1下载下载TrackEval代码

        代码整体结构如下图:(这个代码是独立的,运行的时候TrackEval-master为根目录即可)

         代码的data目录如下结构如下: 

   1、在data/gt/mot_challenge/下文件内容都是官方给出的数据,对视频中行人进行标定,可以理解为标准答案,不需要改动。

   2、在data/trackers/mot_challenge/MOT16-train/data/下存放你跑MOT-16训练集视频得到的跟踪TXT文本。(下面会说明如何生成TXT文本)

3.1.2生成跟踪文本

   在跑跟踪的track.py时,设置保存TXT文本即可,见下图画红框,最后添加:default=True

parser.add_argument('--save-txt', action='store_true', help='save MOT compliant results to *.txt',default=True)

比如我track.py跑的MOT16-13的视频,就会在目录的inference/output下生成一个MOT16-13.txt的文本,依次跑完7个训练视频(视频我会放在最后),可得到7个txt文件(需要自己跑代码生成),将得到的txt文件放在data/trackers/mot_challenge/MOT16-train/data/下即可(3.1.1节提到的),准备工作就完成了。

3.1.3得到MOT16训练集跟踪结果

打开scripys/run_mot_challenge.py,直接运行即可。

  同时,得到的结果也可在data/trackers/mot_challenge/MOT16-train/data/下查看(即我们刚刚存在自己跑出来跟踪txt文本目录下)

 

 TrackEval-master代码链接:

        https://pan.baidu.com/s/1HrZZO74qUXXVg5aeZ9MKdQ?pwd=5555

      提取码:5555

MOT16训练集视频链接:https://pan.baidu.com/s/1e64qRvysIbstIY3FMK3Zow?pwd=5555&_at_=1658213501964

提取码:5555

(PS:这个视频是我用MOT16训练集照片自己合成的,帧率根据官网给的)

  下面的代码包括:

                YOLOv5 5.0权重(weight文件中):Yolov5s(官方自带权重)

                跟踪权重:ckpt.t7(deep_sort_pytorch/ deep_sort/ deep/ checkpoint文件夹下)

                Market-1501数据集(划分好的):在deep_sort_pytorch/ deep_sort/ deep下

https://pan.baidu.com/s/1ieo22bWQOqYUJQb4dP6V1A?pwd=5555
提取码:5555

DeepOC-Sort是一种用于目标跟踪的算法,它结合了YOLOv5和DeepSORT。YOLOv5用于目标检测,而DeepSORT用于目标跟踪。DeepOC-Sort的优点是能够在实时性和准确性之间取得平衡,适用于需要高效目标跟踪的场景。在DeepOC-Sort中,YOLOv5用于检测目标并提取特征,然后DeepSORT使用这些特征来进行目标跟踪。通过结合这两个算法,DeepOC-Sort能够实现高效准确的目标跟踪。\[1\]\[3\]如果你想评估DeepOC-Sort的性能,你可以使用MOT challenge提供的数据集,并根据训练数据集的ground truth文件,对比DeepOC-Sort的跟踪窗口位置和跟踪ID,从而得到一系列评价指标。你可以参考TrackEval项目中提供的算法代码来进行评估。\[2\] #### 引用[.reference_title] - *1* [多目标跟踪:YOLOv8+strongsort](https://blog.csdn.net/Orange_sparkle/article/details/129509459)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* [deepsort和MOT16指标评价](https://blog.csdn.net/weixin_44238733/article/details/124148469)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] - *3* [[深度学习] 搭建行人重识别系统心得](https://blog.csdn.net/LuohenYJ/article/details/128028669)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论 18
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

陈子迩

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值