降维与二分类器准确度互斥

本文探讨了一篇博客中遇到的问题,即在二分类任务中,GBDT模型的查准查全达到98%,但TSNE降维可视化无法显示清晰的分类边界。可能的原因包括测试集中存在未见过的样本、降维方法的局限性(如PCA的线性映射和TSNE的非线性投影可能导致信息丢失)以及降维和模型训练的双重误差。博客作者提供了TSNE降维的可视化图像作为参考,并邀请读者共同探讨解决方案。
摘要由CSDN通过智能技术生成

最近笔者和小伙伴一起排查一个二分类的模型性能下降问题,主要表现为:

  1. tsne降维可视化(或者pca降维),可以非常清晰的看到有分类边界,但是利用gbdt进行训练二分类查准查全只有70%多。

  2. gbdt进行训练二分类查准查全有98%,但是tsne降维可视化(或者pca降维),不能看到有分类边界。

                                                                 tsne可视化

也就是说gbdt的结果与tsne的变成了互斥,笔者和小伙伴们讨论了很久,归纳可能为几个原因:

  1. 测试集里有训练集里没看到过的样本。

  2. tsne降维(pca降维)不一定有效,pca降维是线性映射,tsne利用非线性的流行学习进行投影。

  3. pca,tsne,gbdt等都会产生误差,如果降维又gbdt训练会产生双层误差。

例如:下图都为Tsne降维结果:

​参考:各类降维方法总结

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值