LangChain核心概念与组件

LangChain提供Chains、Agents、Callbacks、Model I/O、Retrieval和Memory等核心组件,用于构建和控制语言模型。Agents赋予模型主动性,Callbacks插入自定义逻辑,Model I/O简化模型输入输出,Retrieval实现信息检索,Memory则负责存储和更新上下文,解决对话中的遗忘问题。这些组件结合使用,可实现智能和灵活的语言处理任务。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

图片

Chains

Chains可以让你按照一定的顺序和逻辑来执行不同的任务。Chains有以下四种类型:

类型 作用
LLMChain 用于在语言模型周围添加一些功能的简单Chain,它由一个PromptTemplate和一个语言模型(LLM或chat model)组成,它可以使用输入键值和内存键值(如果有的话)来格式化PromptTemplate,然后将格式化后的字符串传递给语言模型,并返回语言模型的输出
RouterChain 用于创建一个动态选择下一个要使用的Chain的Chain的范式,它由两个组件组成:RouterChain本身(负责选择下一个要调用的Chain)和destination_chains(RouterChain可以路由到的Chain)
SequentialChain 用于将多个Chain连接起来,形成一个执行一些特定场景的管道的Chain,它允许将一个调用的输出作为另一个调用的输入
TransformChain 用于创建一个通用的转换Chain,它可以对输入进行一些预处理或后处理,然后将其传递给另一个Chain

Agents

通过Agents,可以让语言模型具有主动性和智能性。LangChain基于对AI应用开发的总结抽象,主要提供以下六种代理类型:

类型 作用
Zero-shot ReAct 用于根据工具的描述来决定使用哪个工具的Agent,它可以使用任意数量的工具,但要求每个工具都有一个描述
Structured input ReAct 用于使用多输入工具的Agent,它可以根据工具的参数模式来创建一个结构化的动作输入,这对
<think>好的,我现在需要回答用户关于LangChainRAG的关系以及如何在项目中使用的教程说明。首先,我得理清楚RAG和LangChain的基本概念,然后看看它们是如何结合的。根据提供的引用资料,RAG是结合了检索系统和生成模型的技术,而LangChain可能在其中起到工具或框架的作用。 首先,用户的问题明确想知道两者的关系和具体使用步骤。引用[1]提到RAG结合了神经语言模型和检索系统,适合整合实时或特定信息。引用[2]和[3]指出LangChain的文档加载器、Embedding模型等在RAG中的应用,这说明LangChain可能是实现RAG的工具链的一部分。引用[4]提供了LangChain的Embedding使用教程链接,进一步说明LangChain的具体组件在RAG中的作用。 接下来,我需要组织回答结构。先解释RAG和LangChain各自是什么,然后说明它们的关系,接着分步骤讲解如何在项目中使用,可能包括文档加载、拆分、Embedding、检索和生成等步骤。同时,需要引用提供的资料来支持每个步骤,比如引用[2]和[3]提到的文档拆分注意点,以及Embedding模型的使用。 还需要确保回答符合系统级指令:使用中文,数学公式正确,生成相关问题,并在引用处添加标识。例如,在提到RAG的定义时,引用[1],在涉及LangChain组件时引用[2][3][4]。 可能遇到的疑问点:用户可能不清楚LangChain在RAG中的具体角色,需要明确说明LangChain提供的模块如何帮助实现RAG流程。此外,代码示例部分需要符合用户提供的格式,比如Python代码块,并确保语法正确。 需要验证每个步骤是否符合实际应用,比如文档加载器是否属于LangChain的一部分,Embedding模型如何集成到向量数据库中,以及如何通过检索结果生成回答。同时,引用提供的资料来增强可信度,例如引用[4]中的Embedding教程链接。 最后,生成相关问题时要围绕RAG和LangChain的应用、优化、组件对比等,确保问题相关且有深度。例如,如何优化RAG的检索效率,或者LangChain中的不同组件如何协作。 总结思路后,按照用户要求的格式,先回答关系说明,再分步骤讲解使用教程,添加代码示例,引用标记,最后生成相关问题。确保每个部分都清晰,逻辑连贯,并且引用正确。</think>### LangChainRAG的关系及使用教程说明 #### 一、LangChainRAG的关系 1. **RAG(检索增强生成)** RAG是一种结合检索系统生成模型的技术,通过从外部数据源(如数据库、文档)中检索相关信息,再由语言模型生成精准答案[^1]。例如,用户提问时,RAG会先从文档中查找相关内容,再基于这些内容生成回答,类似于“查阅资料后写总结”。 2. **LangChain的作用** LangChain是一个用于构建大模型应用的开发框架,提供以下关键组件支持RAG流程: - **文档加载器**:支持从PDF、网页、数据库等多种格式加载数据[^2] - **文本拆分工具**:将长文档分割为适合处理的片段 - **Embedding模型**:将文本转换为向量表示,便于检索[^4] - **检索生成链**:整合检索结果大模型生成能力 两者的关系可概括为:**LangChain是实现RAG流程的工具链,而RAG是LangChain支持的典型应用场景之一**。 --- #### 二、LangChain实现RAG的步骤 ##### 1. 文档加载预处理 ```python from langchain.document_loaders import PyPDFLoader # 加载PDF文档 loader = PyPDFLoader("example.pdf") documents = loader.load() # 拆分文档(按段落或固定长度) from langchain.text_splitter import RecursiveCharacterTextSplitter text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50) splits = text_splitter.split_documents(documents) ``` **注意**:拆分需保持语义连贯性,重叠部分可避免关键信息断裂[^3]。 ##### 2. 向量化存储 ```python from langchain.embeddings import HuggingFaceEmbeddings from langchain.vectorstores import Milvus # 使用HuggingFace的Embedding模型 embedding_model = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2") # 存入向量数据库(以Milvus为例) vector_db = Milvus.from_documents( splits, embedding_model, connection_args={"host": "localhost", "port": "19530"} ) ``` Embedding模型选择需权衡效果计算成本。 ##### 3. 检索生成 ```python from langchain.chat_models import ChatOpenAI from langchain.chains import RetrievalQA # 初始化大模型 llm = ChatOpenAI(model_name="gpt-3.5-turbo") # 构建RAG链 qa_chain = RetrievalQA.from_chain_type( llm, retriever=vector_db.as_retriever(search_kwargs={"k": 3}), return_source_documents=True ) # 提问示例 response = qa_chain("什么是RAG的核心优势?") print(response["result"]) ``` 此过程会先检索最相关的3个文档片段,再生成最终答案。 --- #### 三、典型应用场景 1. **企业知识库问答**:将内部文档(如产品手册)导入RAG系统 2. **学术论文分析**:快速提取多篇论文的关键结论 3. **客服自动化**:基于FAQ库生成精准回复 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值