1. 源由
RSSI(Received Signal Strength Indicator)表示接收信号的强度,一般是负值(如 -30 dBm 表示强,-90 dBm 表示弱)。理论上,RSSI 越高(越接近0),可以支持更高的 modulation scheme(调制方式)和 coding rate,从而支持更高的 bitrate(数据速率)。
首先,要报告的一个信息,上述概念是基于理论。通常理论离实际目标是很远的,而我们往往需要从理论逻辑入手,这个是最为根本的科学依据。这也是为什么学习物理有助深入理解世界,问题的源由。
这里将从最为基本的物理概念介入,逐步深入。
2. 物理理论
从能量守恒的角度出发,假设一个理想点源发射功率 P t P_t Pt,其在自由空间中会均匀向球面传播,能量密度分布为:
S ( r ) = P t 4 π r 2 [W/m²] \boxed{ S(r) = \frac{P_t}{4\pi r^2} \quad \text{[W/m²]} } S(r)=4πr2Pt[W/m²]
- S ( r ) S(r) S(r):在距离 r r r 处的功率密度
- 4 π r 2 4\pi r^2 4πr2:球面面积
- P t P_t Pt:发射总功率
因此,从物理角度来看,自由空间中的电磁波功率密度(Power Density)与距离平方成反比,这正是自由空间路径损耗(FSPL) 的物理基础。
3. 接收信号
- 接收天线位于 r r r 米处,其接收功率取决于它的有效接收面积(Effective Aperture),记作 A e A_e Ae:
P r = S ( r ) ⋅ A e = P t ⋅ A e 4 π r 2 \boxed{ P_r = S(r) \cdot A_e = \frac{P_t \cdot A_e}{4\pi r^2} } Pr=S(r)⋅Ae=4πr2Pt⋅Ae
- 一个接收天线的增益 G r G_r Gr 与它的有效面积 A e A_e Ae 有以下关系(频率 f f f,波长 λ = c / f \lambda = c/f λ=c/f):
A e = G r ⋅ λ 2 4 π A_e = \frac{G_r \cdot \lambda^2}{4\pi} Ae=4πGr⋅λ2
代入上式得:
P r = P t ⋅ G r ⋅ λ 2 ( 4 π ) 2 r 2 \boxed{ P_r = \frac{P_t \cdot G_r \cdot \lambda^2}{(4\pi)^2 r^2} } Pr=(4π)2r2Pt⋅Gr⋅λ2
- 类似地,发射天线如果具有增益 G t G_t Gt,表示能量集中在某方向上,相当于“虚拟放大了功率”:
等效方向功率密度: S ′ ( r ) = P t ⋅ G t 4 π r 2 \text{等效方向功率密度:} \quad S'(r) = \frac{P_t \cdot G_t}{4\pi r^2} 等效方向功率密度:S′(r)=4πr2Pt⋅Gt
最终接收功率变为:
P r = P t ⋅ G t ⋅ G r ⋅ λ 2 ( 4 π ) 2 r 2 \boxed{ P_r = \frac{P_t \cdot G_t \cdot G_r \cdot \lambda^2}{(4\pi)^2 r^2} } Pr=(4π)2r2Pt⋅Gt⋅Gr⋅λ2
- FSPL (Free Space Path Loss) 推导
- 步骤一:两边取对数(以 10 为底)
使用 10 log 10 ( x ) 10 \log_{10}(x) 10log10(x) 把功率和比值转换为 dB:
log 10 ( P r ) = log 10 ( P t ) + log 10 ( G t ) + log 10 ( G r ) + log 10 ( λ 2 ) − log 10 ( ( 4 π ) 2 r 2 ) \log_{10}(P_r) = \log_{10}(P_t) + \log_{10}(G_t) + \log_{10}(G_r) + \log_{10}(\lambda^2) - \log_{10}((4\pi)^2 r^2) log10(Pr)=log10(Pt)+log10(Gt)+log10(Gr)+log10(λ2)−log10((4π)2r2)
乘法变加法,除法变减法。整理得到:
P r ( d B m ) = P t ( d B m ) + G t ( d B ) + G r ( d B ) + 20 log 10 ( λ ) − 20 log 10 ( 4 π r ) P_r (dBm) = P_t (dBm) + G_t (dB) + G_r (dB) + 20\log_{10}(\lambda) - 20\log_{10}(4\pi r) Pr(dBm)=Pt(dBm)+Gt(dB)+Gr(dB)+20log10(λ)−20log10(4πr)
- 步骤二:转换波长为频率
波长 λ = c f \lambda = \frac{c}{f} λ=fc,所以:
20 log 10 ( λ ) = 20 log 10 ( c f ) = 20 log 10 ( c ) − 20 log 10 ( f ) 20 \log_{10}(\lambda) = 20 \log_{10}\left(\frac{c}{f}\right) = 20 \log_{10}(c) - 20 \log_{10}(f) 20log10(λ)=20log10(fc)=20log10(c)−20log10(f)
代入上式:
P r ( d B m ) = P t + G t + G r + 20 log 10 ( c ) − 20 log 10 ( f ) − 20 log 10 ( 4 π r ) P_r (dBm) = P_t + G_t + G_r + 20\log_{10}(c) - 20\log_{10}(f) - 20\log_{10}(4\pi r) Pr(dBm)=Pt+Gt+Gr+20log10(c)−20log10(f)−20log10(4πr)
合并两项负号部分:
P r ( d B m ) = P t + G t + G r − [ 20 log 10 ( f ) + 20 log 10 ( r ) − 20 log 10 ( c / 4 π ) ] P_r (dBm) = P_t + G_t + G_r - \left[ 20 \log_{10}(f) + 20 \log_{10}(r) - 20 \log_{10}(c / 4\pi) \right] Pr(dBm)=Pt+Gt+Gr−[20log10(f)+20log10(r)−20log10(c/4π)]
- 步骤三:定义 FSPL(Free Space Path Loss)
F S P L ( d B ) = 20 log 10 ( f ) + 20 log 10 ( r ) − 147.55 \boxed{ FSPL(dB) = 20\log_{10}(f) + 20\log_{10}(r) - 147.55 } FSPL(dB)=20log10(f)+20log10(r)−147.55
4. 讨论
这个公式只反映路径本身对信号的衰减,不含天线增益和发射功率。
所以我们说:FSPL 是一个“纯粹因路径和频率造成的损耗项”。
注:这里都仅仅是理想状态,实际空间上传输由于介质的动态性,能量吸收密度也是在不断变化的。
P r = P t + G t + G r − FSPL \boxed{ P_r = P_t + G_t + G_r - \text{FSPL} } Pr=Pt+Gt+Gr−FSPL
- 公式对比
| 表达式 | 说明 |
|---|---|
| P r = P t G t G r λ 2 ( 4 π ) 2 r 2 P_r = \frac{P_t G_t G_r \lambda^2}{(4\pi)^2 r^2} Pr=(4π)2r2PtGtGrλ2 | 功率传输表达式 |
| P r ( d B m ) = P t + G t + G r − F S P L P_r (dBm) = P_t + G_t + G_r - FSPL Pr(dBm)=Pt+Gt+Gr−FSPL | dB量纲 表达形式 |
| F S P L = 20 log 10 ( f ) + 20 log 10 ( r ) − 147.55 FSPL = 20 \log_{10}(f) + 20 \log_{10}(r) - 147.55 FSPL=20log10(f)+20log10(r)−147.55 | 路径损耗项(单位 Hz、m) |
- 物理理解
| 物理视角 | 数学对应 |
|---|---|
| 电磁波能量密度随 1 r 2 \frac{1}{r^2} r21 减小 | S ∝ 1 r 2 S \propto \frac{1}{r^2} S∝r21 |
| 接收功率 = 功率密度 × 接收面积 | P r = S ⋅ A e P_r = S \cdot A_e Pr=S⋅Ae |
| 接收面积 ∝ λ 2 ⋅ G \lambda^2 \cdot G λ2⋅G | 天线增益关联波长和面积 |
| 把功率密度模型代入并取对数 | 得到 FSPL(dB 形式) |
5. 参考资料
【1】OpenIPC开源FPV之Adaptive-Link关键RF参数
【2】OpenIPC开源FPV之Adaptive-Link信号干扰
【3】OpenIPC开源FPV之Adaptive-Link新版本算法v0.60.0
【4】OpenIPC开源FPV之Adaptive-Link日志分析
6. 补充知识: dBm 与功率(瓦特 W)之间的关系
- dBm 是以 1 毫瓦(mW)为参考点的对数单位,用于表达功率大小。
公式:
P dBm = 10 ⋅ log 10 ( P mW 1 mW ) \boxed{ P_{\text{dBm}} = 10 \cdot \log_{10} \left( \frac{P_{\text{mW}}}{1\,\text{mW}} \right) } PdBm=10⋅log10(1mWPmW)
其中:
-
P dBm P_{\text{dBm}} PdBm:以 dBm 为单位的功率
-
P mW P_{\text{mW}} PmW:以毫瓦(mW)为单位的功率
-
反过来,从 dBm 转换为瓦特(或毫瓦):
P mW = 1 0 P dBm / 10 , P W = P mW 1000 P_{\text{mW}} = 10^{P_{\text{dBm}} / 10} \quad , \quad P_{\text{W}} = \frac{P_{\text{mW}}}{1000} PmW=10PdBm/10,PW=1000PmW
- 常见 dB / dBm 与倍数关系对照表
| 功率(W) | 功率(mW) | dBm |
|---|---|---|
| 1 W | 1000 mW | 30 dBm |
| 0.1 W | 100 mW | 20 dBm |
| 0.01 W | 10 mW | 10 dBm |
| 0.001 W | 1 mW | 0 dBm |
| 0.000001 W | 1 μW | -30 dBm |
| 增益/损耗 (dB) | 对应功率倍数 | 对应电压倍数(阻抗不变时) | 备注记忆 |
|---|---|---|---|
| +10 dB | ×10 | ×3.16 | 一档放大 |
| +6 dB | ×4 | ×2 | 电压×2 |
| +3 dB | ×2 | ×1.41 | 功率翻倍 |
| +1 dB | ×1.26 | ×1.12 | 稍微放大 |
| 0 dB | ×1 | ×1 | 无变化 |
| −1 dB | ÷1.26 | ÷1.12 | 略微衰减 |
| −3 dB | ÷2 | ÷1.41 | 功率减半 |
| −6 dB | ÷4 | ÷2 | 电压减半 |
| −10 dB | ÷10 | ÷3.16 | 一档衰减 |

2582

被折叠的 条评论
为什么被折叠?



