OpenIPC开源FPV之RSSI衰减模型

1. 源由

RSSI(Received Signal Strength Indicator)表示接收信号的强度,一般是负值(如 -30 dBm 表示强,-90 dBm 表示弱)。理论上,RSSI 越高(越接近0),可以支持更高的 modulation scheme(调制方式)和 coding rate,从而支持更高的 bitrate(数据速率)。

首先,要报告的一个信息,上述概念是基于理论。通常理论离实际目标是很远的,而我们往往需要从理论逻辑入手,这个是最为根本的科学依据。这也是为什么学习物理有助深入理解世界,问题的源由。

这里将从最为基本的物理概念介入,逐步深入。

2. 物理理论

从能量守恒的角度出发,假设一个理想点源发射功率 P t P_t Pt,其在自由空间中会均匀向球面传播,能量密度分布为:

S ( r ) = P t 4 π r 2 [W/m²] \boxed{ S(r) = \frac{P_t}{4\pi r^2} \quad \text{[W/m²]} } S(r)=4πr2Pt[W/m²]

  • S ( r ) S(r) S(r):在距离 r r r 处的功率密度
  • 4 π r 2 4\pi r^2 4πr2:球面面积
  • P t P_t Pt:发射总功率

因此,从物理角度来看,自由空间中的电磁波功率密度(Power Density)与距离平方成反比,这正是自由空间路径损耗(FSPL) 的物理基础。

3. 接收信号

  1. 接收天线位于 r r r 米处,其接收功率取决于它的有效接收面积(Effective Aperture),记作 A e A_e Ae

P r = S ( r ) ⋅ A e = P t ⋅ A e 4 π r 2 \boxed{ P_r = S(r) \cdot A_e = \frac{P_t \cdot A_e}{4\pi r^2} } Pr=S(r)Ae=4πr2PtAe

  1. 一个接收天线的增益 G r G_r Gr 与它的有效面积 A e A_e Ae 有以下关系(频率 f f f,波长 λ = c / f \lambda = c/f λ=c/f):

A e = G r ⋅ λ 2 4 π A_e = \frac{G_r \cdot \lambda^2}{4\pi} Ae=4πGrλ2

代入上式得:

P r = P t ⋅ G r ⋅ λ 2 ( 4 π ) 2 r 2 \boxed{ P_r = \frac{P_t \cdot G_r \cdot \lambda^2}{(4\pi)^2 r^2} } Pr=(4π)2r2PtGrλ2

  1. 类似地,发射天线如果具有增益 G t G_t Gt,表示能量集中在某方向上,相当于“虚拟放大了功率”:

等效方向功率密度: S ′ ( r ) = P t ⋅ G t 4 π r 2 \text{等效方向功率密度:} \quad S'(r) = \frac{P_t \cdot G_t}{4\pi r^2} 等效方向功率密度:S(r)=4πr2PtGt

最终接收功率变为:

P r = P t ⋅ G t ⋅ G r ⋅ λ 2 ( 4 π ) 2 r 2 \boxed{ P_r = \frac{P_t \cdot G_t \cdot G_r \cdot \lambda^2}{(4\pi)^2 r^2} } Pr=(4π)2r2PtGtGrλ2

  1. FSPL (Free Space Path Loss) 推导
  • 步骤一:两边取对数(以 10 为底)

使用 10 log ⁡ 10 ( x ) 10 \log_{10}(x) 10log10(x) 把功率和比值转换为 dB:

log ⁡ 10 ( P r ) = log ⁡ 10 ( P t ) + log ⁡ 10 ( G t ) + log ⁡ 10 ( G r ) + log ⁡ 10 ( λ 2 ) − log ⁡ 10 ( ( 4 π ) 2 r 2 ) \log_{10}(P_r) = \log_{10}(P_t) + \log_{10}(G_t) + \log_{10}(G_r) + \log_{10}(\lambda^2) - \log_{10}((4\pi)^2 r^2) log10(Pr)=log10(Pt)+log10(Gt)+log10(Gr)+log10(λ2)log10((4π)2r2)

乘法变加法,除法变减法。整理得到:

P r ( d B m ) = P t ( d B m ) + G t ( d B ) + G r ( d B ) + 20 log ⁡ 10 ( λ ) − 20 log ⁡ 10 ( 4 π r ) P_r (dBm) = P_t (dBm) + G_t (dB) + G_r (dB) + 20\log_{10}(\lambda) - 20\log_{10}(4\pi r) Pr(dBm)=Pt(dBm)+Gt(dB)+Gr(dB)+20log10(λ)20log10(4πr)

  • 步骤二:转换波长为频率

波长 λ = c f \lambda = \frac{c}{f} λ=fc,所以:

20 log ⁡ 10 ( λ ) = 20 log ⁡ 10 ( c f ) = 20 log ⁡ 10 ( c ) − 20 log ⁡ 10 ( f ) 20 \log_{10}(\lambda) = 20 \log_{10}\left(\frac{c}{f}\right) = 20 \log_{10}(c) - 20 \log_{10}(f) 20log10(λ)=20log10(fc)=20log10(c)20log10(f)

代入上式:

P r ( d B m ) = P t + G t + G r + 20 log ⁡ 10 ( c ) − 20 log ⁡ 10 ( f ) − 20 log ⁡ 10 ( 4 π r ) P_r (dBm) = P_t + G_t + G_r + 20\log_{10}(c) - 20\log_{10}(f) - 20\log_{10}(4\pi r) Pr(dBm)=Pt+Gt+Gr+20log10(c)20log10(f)20log10(4πr)

合并两项负号部分:

P r ( d B m ) = P t + G t + G r − [ 20 log ⁡ 10 ( f ) + 20 log ⁡ 10 ( r ) − 20 log ⁡ 10 ( c / 4 π ) ] P_r (dBm) = P_t + G_t + G_r - \left[ 20 \log_{10}(f) + 20 \log_{10}(r) - 20 \log_{10}(c / 4\pi) \right] Pr(dBm)=Pt+Gt+Gr[20log10(f)+20log10(r)20log10(c/4π)]

  • 步骤三:定义 FSPL(Free Space Path Loss)

F S P L ( d B ) = 20 log ⁡ 10 ( f ) + 20 log ⁡ 10 ( r ) − 147.55 \boxed{ FSPL(dB) = 20\log_{10}(f) + 20\log_{10}(r) - 147.55 } FSPL(dB)=20log10(f)+20log10(r)147.55

4. 讨论

这个公式只反映路径本身对信号的衰减,不含天线增益和发射功率。

所以我们说:FSPL 是一个“纯粹因路径和频率造成的损耗项”。

注:这里都仅仅是理想状态,实际空间上传输由于介质的动态性,能量吸收密度也是在不断变化的。

P r = P t + G t + G r − FSPL \boxed{ P_r = P_t + G_t + G_r - \text{FSPL} } Pr=Pt+Gt+GrFSPL

  • 公式对比
表达式说明
P r = P t G t G r λ 2 ( 4 π ) 2 r 2 P_r = \frac{P_t G_t G_r \lambda^2}{(4\pi)^2 r^2} Pr=(4π)2r2PtGtGrλ2功率传输表达式
P r ( d B m ) = P t + G t + G r − F S P L P_r (dBm) = P_t + G_t + G_r - FSPL Pr(dBm)=Pt+Gt+GrFSPLdB量纲 表达形式
F S P L = 20 log ⁡ 10 ( f ) + 20 log ⁡ 10 ( r ) − 147.55 FSPL = 20 \log_{10}(f) + 20 \log_{10}(r) - 147.55 FSPL=20log10(f)+20log10(r)147.55路径损耗项(单位 Hz、m)
  • 物理理解
物理视角数学对应
电磁波能量密度随 1 r 2 \frac{1}{r^2} r21 减小 S ∝ 1 r 2 S \propto \frac{1}{r^2} Sr21
接收功率 = 功率密度 × 接收面积 P r = S ⋅ A e P_r = S \cdot A_e Pr=SAe
接收面积 ∝ λ 2 ⋅ G \lambda^2 \cdot G λ2G天线增益关联波长和面积
把功率密度模型代入并取对数得到 FSPL(dB 形式)

5. 参考资料

【1】OpenIPC开源FPV之Adaptive-Link关键RF参数
【2】OpenIPC开源FPV之Adaptive-Link信号干扰
【3】OpenIPC开源FPV之Adaptive-Link新版本算法v0.60.0
【4】OpenIPC开源FPV之Adaptive-Link日志分析

6. 补充知识: dBm 与功率(瓦特 W)之间的关系

  • dBm 是以 1 毫瓦(mW)为参考点的对数单位,用于表达功率大小。

公式:

P dBm = 10 ⋅ log ⁡ 10 ( P mW 1   mW ) \boxed{ P_{\text{dBm}} = 10 \cdot \log_{10} \left( \frac{P_{\text{mW}}}{1\,\text{mW}} \right) } PdBm=10log10(1mWPmW)

其中:

  • P dBm P_{\text{dBm}} PdBm:以 dBm 为单位的功率

  • P mW P_{\text{mW}} PmW:以毫瓦(mW)为单位的功率

  • 反过来,从 dBm 转换为瓦特(或毫瓦):

P mW = 1 0 P dBm / 10 , P W = P mW 1000 P_{\text{mW}} = 10^{P_{\text{dBm}} / 10} \quad , \quad P_{\text{W}} = \frac{P_{\text{mW}}}{1000} PmW=10PdBm/10,PW=1000PmW

  • 常见 dB / dBm 与倍数关系对照表
功率(W)功率(mW)dBm
1 W1000 mW30 dBm
0.1 W100 mW20 dBm
0.01 W10 mW10 dBm
0.001 W1 mW0 dBm
0.000001 W1 μW-30 dBm
增益/损耗 (dB)对应功率倍数对应电压倍数(阻抗不变时)备注记忆
+10 dB×10×3.16一档放大
+6 dB×4×2电压×2
+3 dB×2×1.41功率翻倍
+1 dB×1.26×1.12稍微放大
0 dB×1×1无变化
−1 dB÷1.26÷1.12略微衰减
−3 dB÷2÷1.41功率减半
−6 dB÷4÷2电压减半
−10 dB÷10÷3.16一档衰减
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值