人工智能_机器学习058_葡萄酒特征分类模型_核函数_支持向量机分类器SVC和不同核函数的差异_linear线性_poly多项式_rbf高斯分布_sigmoid---人工智能工作笔记0098

本文通过分析葡萄酒数据集,使用支持向量机SVC探讨了不同核函数(linear、poly、rbf、sigmoid)对分类效果的影响。实验结果显示,线性核函数在该问题上取得最好成绩0.97222,其次是多项式核函数,而高斯rbf和sigmoid核函数得分较低。实际应用中需根据数据特性选择合适的核函数。
摘要由CSDN通过智能技术生成

首先我们导包:
import numpy as np 数学计算包

from sklearn import datasets 数据集

from sklearn.svm import SVC 支持向量机线性包

from sklearn.model_selection import train_test_split 分割数据包

from sklearn.metrics import accuracy_score  把预测数据和真实数据传入可以评分

accuracy_score,这是scikit-learn库中的一个函数,用于计算二分类或多分类问题的准确率。这个函数接受两个参数:真实标签和预测标签,然后返回一个表示准确率的浮点数。

其实就是用来评分的

然后我们先去加载数据,这次我们加载的是葡萄酒的数据,也就是对葡萄酒进行分类可以看到

这里

datasets.load_wine();

可以看到

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

添柴程序猿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值