首先我们导包:
import numpy as np 数学计算包
from sklearn import datasets 数据集
from sklearn.svm import SVC 支持向量机线性包
from sklearn.model_selection import train_test_split 分割数据包
from sklearn.metrics import accuracy_score 把预测数据和真实数据传入可以评分
accuracy_score
,这是scikit-learn库中的一个函数,用于计算二分类或多分类问题的准确率。这个函数接受两个参数:真实标签和预测标签,然后返回一个表示准确率的浮点数。
其实就是用来评分的
然后我们先去加载数据,这次我们加载的是葡萄酒的数据,也就是对葡萄酒进行分类可以看到
这里
datasets.load_wine();
可以看到