# H∞鲁棒控制问题的一般性描述

Robust Control System：反馈控制具有承受某一类不确定影响的能力，即在这一类不确定条件下具有保持（系统）稳定性、动态特性（灵敏度）和稳态特性（渐进调节）的能力。

G为增广控制对象；K控制器；u是控制输入；y是被测量输出或对象输出（u和y分别是系统传递函数或者状态空间里的输入和输出）；w是外部输入或参考输入，如：扰动、噪声；z是被控制的输出。

$\left\{ {\begin{array}{*{20}{c}}{\dot x = Ax + \left[ {{B_{1,}}{B_2}} \right]\left[ {\begin{array}{*{20}{c}}w\\u\end{array}} \right]}\\{\left[ {\begin{array}{*{20}{c}}z\\y\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}{{C_1}}\\{{C_2}}\end{array}} \right]x + \left[ {\begin{array}{*{20}{c}}{{D_{11}}}&{{D_{12}}}\\{{D_{21}}}&{{D_{22}}}\end{array}} \right]\left[ {\begin{array}{*{20}{c}}w\\u\end{array}} \right]}\end{array}} \right.$

${\text{G = }}\left[ {\begin{array}{*{20}{c}} A&{{B_1}}&{{B_2}} \\ {{C_1}}&{{D_{11}}}&{{D_{12}}} \\ {{C_2}}&{{D_{21}}}&{{D_{22}}} \end{array}} \right]$

$\begin{gathered} G\left( s \right) = \left[ {\begin{array}{*{20}{c}} {{G_{11}}\left( s \right)}&{{G_{12}}\left( s \right)} \\ {{G_{21}}\left( s \right)}&{{G_{22}}\left( s \right)} \end{array}} \right] \hfill \\ {G_{ij}} = {C_i}{\left( {sI - A} \right)^{ - 1}}{B_j} + {D_{ij}} \hfill \\ \end{gathered}$

$\gamma$

1）标准${H_\infty }$控制问题：${\left\| {{T_{wz}}\left( s \right)} \right\|_\infty } < 1$
2）${H_2}$最优控制问题：$\min {\left\| {{T_{wz}}\left( s \right)} \right\|_{\rm{2}}}$
3）${H_\infty }$最优控制问题：$\min {\left\| {{T_{wz}}\left( s \right)} \right\|_{\rm{2}}}$
${H_\infty }$优控制问题：${\left\| {{T_{wz}}\left( s \right)} \right\|_\infty } < \gamma$$\gamma$是一个正实数。

### 1、干扰抑制（最小灵敏度）问题 =>鲁棒标准问题

$\left\{ {\begin{array}{*{20}{c}} {z = d - Pu} \\ {y = d - Pu} \\ {u = ky} \\ {w = d} \end{array}} \right. \Rightarrow \left[ {\begin{array}{*{20}{c}} z \\ y \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} 1&{ - P} \\ 1&{ - P} \end{array}} \right]\left[ {\begin{array}{*{20}{c}} w \\ u \end{array}} \right]$
${T_{wz}} = {\left( {1 + PK} \right)^{ - 1}}$（即灵敏度函数$S\left( s \right)$

### 2、鲁棒镇定问题=>鲁棒标准问题

#### 1）加性不确定系统

${T_{zw}}\left( s \right) = {W_2}\left( s \right)K\left( s \right){\left[ {I - P\left( s \right)K\left( s \right)} \right]^{ - 1}}{W_1}\left( s \right)$

${F_l}\left( {G,K} \right) = {W_2}K{\left[ {I - PK} \right]^{ - 1}}{W_1}$

#### 2）乘性不确定系统

${F_l}\left( {G,K} \right) = {W_2}PK{\left[ {I - PK} \right]^{ - 1}}{W_1}$

### 3、跟踪问题=>鲁棒标准问题

$z = \left[ {\begin{array}{*{20}{c}} {r - v} \\ {\rho u} \end{array}} \right]$

$y = \left[ {\begin{array}{*{20}{c}} r \\ v \end{array}} \right]$

### 4、模型匹配问题=>鲁棒标准问题

T1是一个模型，设计参数Q式模型T2QT3匹配T1，由第二个图可以得到：
$\begin{gathered} G = \left[ {\begin{array}{*{20}{c}} {{T_1}}&{{T_2}} \\ {{T_3}}&0 \end{array}} \right] \hfill \\ K = - Q \hfill \\ \end{gathered}$

### 5、混合灵敏度问题=>鲁棒标准问题

$\begin{gathered} {\left\| {S\left( {j\omega } \right)} \right\|_\infty } < {\varepsilon _1},\omega \in {Q_1} \hfill \\ {\left\| {T\left( {j\omega } \right)} \right\|_\infty } < {\varepsilon _2},\omega \in {Q_2} \hfill \\ \end{gathered}$

${\left\| {\left[ {\begin{array}{*{20}{c}} {{W_1}S} \\ {{W_2}T} \end{array}} \right]} \right\|_\infty } < \gamma$

${T_{wz}} = \left[ {\begin{array}{*{20}{c}} {{W_1}} \\ 0 \end{array}} \right] + \left[ {\begin{array}{*{20}{c}} { - {W_1}P} \\ {{W_2}P} \end{array}} \right]{\left( {I{\text{ + KP}}} \right)^{ - 1}}K$

${\left\| {{T_{wz}}\left( s \right)} \right\|_\infty } < \gamma$
• 点赞 8
• 评论 2
• 分享
x

海报分享

扫一扫，分享海报

• 收藏 33
• 手机看

分享到微信朋友圈

x

扫一扫，手机阅读

• 打赏

打赏

light_lj

你的鼓励将是我创作的最大动力

C币 余额
2C币 4C币 6C币 10C币 20C币 50C币
• 一键三连

点赞Mark关注该博主, 随时了解TA的最新博文
05-18

12-07
03-14
11-12
04-09
09-11
03-05
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客