第J4周:ResNet与DenseNet结合探索-采用DPN98

本文为🔗365天深度学习训练营 中的学习记录博客
原作者:K同学啊**

本次任务:
根据ResNet与DenseNet,进行结合来探索和构建一个新的模型框架。
下面分别是ResNet与DenseNet的模型结构图。

在这里插入图片描述图1 ResNet50V2

在这里插入图片描述图2 DenseNet121

一、DPN模型

在这里插入图片描述
参考论文:NIPS-2017-dual-path-networks-Paper
上图1是ResNet, 图2 是DenseNet,变粗的部分就是新的网络层的特征,不断与之前的特征concate,注意有多个1x1卷积核。同一个颜色的卷积核代表的是同一个尺度的1x1卷积核,比如,绿色的1x1卷积核代表了是指对第一层的特征进行1x1卷积。而带下划线的1x1卷积核则是为了对concate后的特征进行维度上的整理。图3是对DenseNet的一个改动,假设所有相同颜色的1x1卷积核是共享的,那么图2就可以整理成为图3的格式。图3的左半部分是DenseNet,右半部分是ResNet。回忆在核心论点一中,提到concate是可以等价成为相加的,所以在图2中绿色1x1卷积核、桔色1x1卷积核分别对第一层特征、新特征处理后,再concate进行后面的操作,也就等价于图3中右边通道中二者相加。

图4是提出的DPN,一方面,这个网络结构可以直接从DPN的定义公式得到;另一方面,可以发现,只要把图3 里面的1x1卷积核拆分、整理、变形,也可以得到图4的结构。

上图最右边DPN结构把每个block中每个通道的第一个1x1卷积核合并的结果,和图4的最大不同在于ResNet和DenseNet共享了第一个 1×1 卷积。在实际计算 3×3 卷积时,使用了分组卷积来提升网络的性能。在设计网络的超参时,ResNet的通道数也比DenseNet的通道数多点,防止DenseNet随着层数的增加引发的显存消耗速度过快的问题。和其它网络一样,我们也可以通过堆叠网络块的方式来提升模型的容量。

三、模型实现

import torch
import torch.nn as nn
import torchvision.transforms as transforms
import torchvision
from torchvision import transforms, datasets
import os,PIL,pathlib,warnings
import torch.nn.functional as F

warnings.filterwarnings("ignore")             #忽略警告信息
# 设置CPU/GPU
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
device

代码输出:

device(type='cpu')
# 导入数据,与J3的数据是一样的
data_dir='./J3/bird_photos/'
data_dir=pathlib.Path(data_dir)

data_paths=list(data_dir.glob('*'))
classNames=[str(path).split('\\')[2] for path in data_paths]
classNames

代码输出:

['Bananaquit', 'Black Skimmer', 'Black Throated Bushtiti', 'Cockatoo']
num_classes=len(classNames)
num_classes

代码输出:

4
train_transforms = transforms.Compose([
    transforms.Resize([224,224]),
    transforms.ToTensor(),
    transforms.Normalize(
        mean = [0.485,0.456,0.406],
        std = [0.229,0.224,0.225]
    )
])
 
test_transforms = transforms.Compose([
    transforms.Resize([224,224]),
    transforms.ToTensor(),
    transforms.Normalize(
        mean = [0.485,0.456,0.406],
        std = [0.229,0.224,0.225]
    )
])
total_data = datasets.ImageFolder(data_dir,transform = train_transforms)
total_data

代码输出:

Dataset ImageFolder
    Number of datapoints: 565
    Root location: J3\bird_photos
    StandardTransform
Transform: Compose(
               Resize(size=[224, 224], interpolation=bilinear, max_size=None, antialias=True)
               ToTensor()
               Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
           )
# 划分数据集
train_size = int(0.8 * len(total_data))
test_size  = len(total_data) - train_size
train_dataset, test_dataset = torch.utils.data.random_split(total_data, [train_size, test_size])
print(train_dataset)
print(test_dataset)
 
batch_size = 8
 
train_dl = torch.utils.data.DataLoader(train_dataset,
                                        batch_size=batch_size,
                                        shuffle=True,
                                        #num_workers=1
                                       )
test_dl = torch.utils.data.DataLoader(test_dataset,
                                        batch_size=batch_size,
                                        shuffle=True,
                                        #num_workers=1
                                       )
 
for X, y in test_dl:
    print("Shape of X [N, C, H, W]: ", X.shape)
    print("Shape of y: ", y.shape, y.dtype)
    break
    
for X, y in train_dl:
    print("Shape of X [N, C, H, W]: ", X.shape)
    print("Shape of y: ", y.shape, y.dtype)
    break

代码输出:

<torch.utils.data.dataset.Subset object at 0x00000262381F8B80>
<torch.utils.data.dataset.Subset object at 0x00000262381F8B20>
Shape of X [N, C, H, W]:  torch.Size([8, 3, 224, 224])
Shape of y:  torch.Size([8]) torch.int64
Shape of X [N, C, H, W]:  torch.Size([8, 3, 224, 224])
Shape of y:  torch.Size([8]) torch.int64
from collections import OrderedDict
import torch
import torch.nn as nn
import torch.nn.functional as F
class Block(nn.Module):
    def __init__(self, in_channel, mid_channel, out_channel, dense_channel, stride, groups, is_shortcut=False):
        # in_channel,是输入通道数,mid_channel是中间经历的通道数,out_channels是经过一次板块之后的输出通道数。
        # dense_channels设置这个参数的原因就是一边进行着resnet方式的卷积运算,另一边也同时进行着dense的卷积计算,之后特征图融合形成新的特征图
        super().__init__()
        self.is_shortcut = is_shortcut
        self.out_channel = out_channel
        self.conv1 = nn.Sequential(
            nn.Conv2d(in_channel, mid_channel, kernel_size=1, bias=False),
            nn.BatchNorm2d(mid_channel),
            nn.ReLU()
        )
        self.conv2 = nn.Sequential(
            nn.Conv2d(mid_channel, mid_channel, kernel_size=3, stride=stride, padding=1, groups=groups, bias=False),
            nn.BatchNorm2d(mid_channel),
            nn.ReLU()
        )
        self.conv3 = nn.Sequential(
            nn.Conv2d(mid_channel, out_channel+dense_channel, kernel_size=1, bias=False),
            nn.BatchNorm2d(out_channel+dense_channel)
        )
        if self.is_shortcut:
            self.shortcut = nn.Sequential(
                nn.Conv2d(in_channel, out_channel+dense_channel, kernel_size=3, padding=1, stride=stride, bias=False),
                nn.BatchNorm2d(out_channel+dense_channel)
            )
        self.relu = nn.ReLU(inplace=True)
    
    def forward(self, x):
        a = x
        x = self.conv1(x)
        x = self.conv2(x)
        x = self.conv3(x)
        if self.is_shortcut:
            a = self.shortcut(a)
        d = self.out_channel
        x = torch.cat([a[:,:d,:,:] + x[:,:d,:,:], a[:,d:,:,:], x[:,d:,:,:]], dim=1)
        x = self.relu(x)
        return x

class DPN(nn.Module):
    def __init__(self, cfg):
        super(DPN, self).__init__()
        self.group = cfg['group']
        self.in_channel = cfg['in_channel']
        mid_channels = cfg['mid_channels']
        out_channels = cfg['out_channels']
        dense_channels = cfg['dense_channels']
        num = cfg['num']
        self.conv1 = nn.Sequential(
            nn.Conv2d(3, self.in_channel, 7, stride=2, padding=3, bias=False, padding_mode='zeros'),
            nn.BatchNorm2d(self.in_channel),
            nn.ReLU(),
            nn.MaxPool2d(kernel_size=3, stride=2, padding=0)
        )
        self.conv2 = self._make_layers(mid_channels[0], out_channels[0], dense_channels[0], num[0], stride=1)
        self.conv3 = self._make_layers(mid_channels[1], out_channels[1], dense_channels[1], num[1], stride=2)
        self.conv4 = self._make_layers(mid_channels[2], out_channels[2], dense_channels[2], num[2], stride=2)
        self.conv5 = self._make_layers(mid_channels[3], out_channels[3], dense_channels[3], num[3], stride=2)
        self.pool = nn.AdaptiveAvgPool2d((1, 1))
        self.fc = nn.Linear(cfg['out_channels'][3] + (num[3]+1) * cfg['dense_channels'][3], cfg['classes']) # fc层需要计算
    
    def _make_layers(self, mid_channel, out_channel, dense_channel, num, stride=2):
        layers = []
        layers.append(Block(self.in_channel, mid_channel, out_channel, dense_channel, stride=stride, groups=self.group, is_shortcut=True))
        # block_1里面is_shortcut=True就是resnet中的shortcut连接,将浅层的特征进行一次卷积之后与进行三次卷积的特征图相加
        # 后面几次相同的板块is_shortcut=False简单的理解就是一个多次重复的板块,第一次利用就可以满足浅层特征的利用,后面重复的不在需要
        self.in_channel = out_channel + dense_channel*2
        # 由于里面包含dense这种一直在叠加的特征图计算,
        # 所以第一次是2倍的dense_channel,后面每次一都会多出1倍,所以有(i+2)*dense_channel
        for i in range(1, num):
            layers.append(Block(self.in_channel, mid_channel, out_channel, dense_channel, stride=1, groups=self.group))
            self.in_channel = self.in_channel + dense_channel
            #self.in_channel = out_channel + (i+2)*dense_channel
        return nn.Sequential(*layers)
    
    def forward(self, x):
        x = self.conv1(x)
        x = self.conv2(x)
        x = self.conv3(x)
        x = self.conv4(x)
        x = self.conv5(x)
        x = self.pool(x)
        x = torch.flatten(x, start_dim=1)
        x = self.fc(x)
        return x
def DPN92(n_class=10):
    cfg = {
        'group': 32,
        'in_channel': 64,
        'mid_channels': (96, 192, 384, 768),
        'out_channels': (256, 512, 1024, 2048),
        'dense_channels': (16, 32, 24, 128),
        'num': (3, 4, 20, 3),
        'classes': (n_class)
    }
    return DPN(cfg)

def DPN98(n_class=10):
    cfg = {
        'group': 40,
        'in_channel': 96,
        'mid_channels': (160, 320, 640, 1280),
        'out_channels': (256, 512, 1024, 2048),
        'dense_channels': (16, 32, 32, 128),
        'num': (3, 6, 20, 3),
        'classes': (n_class)
    }
    return DPN(cfg)
# 这里采用DPN98
model=DPN98(n_class=num_classes).to(device)
# 统计模型参数量以及其他指标
import torchsummary as summary
summary.summary(model,(3,224,224))

代码输出:

----------------------------------------------------------------
        Layer (type)               Output Shape         Param #
================================================================
            Conv2d-1         [-1, 96, 112, 112]          14,112
       BatchNorm2d-2         [-1, 96, 112, 112]             192
              ReLU-3         [-1, 96, 112, 112]               0
         MaxPool2d-4           [-1, 96, 55, 55]               0
            Conv2d-5          [-1, 160, 55, 55]          15,360
       BatchNorm2d-6          [-1, 160, 55, 55]             320
              ReLU-7          [-1, 160, 55, 55]               0
            Conv2d-8          [-1, 160, 55, 55]           5,760
       BatchNorm2d-9          [-1, 160, 55, 55]             320
             ReLU-10          [-1, 160, 55, 55]               0
           Conv2d-11          [-1, 272, 55, 55]          43,520
      BatchNorm2d-12          [-1, 272, 55, 55]             544
           Conv2d-13          [-1, 272, 55, 55]         235,008
      BatchNorm2d-14          [-1, 272, 55, 55]             544
             ReLU-15          [-1, 288, 55, 55]               0
            Block-16          [-1, 288, 55, 55]               0
           Conv2d-17          [-1, 160, 55, 55]          46,080
      BatchNorm2d-18          [-1, 160, 55, 55]             320
             ReLU-19          [-1, 160, 55, 55]               0
           Conv2d-20          [-1, 160, 55, 55]           5,760
      BatchNorm2d-21          [-1, 160, 55, 55]             320
             ReLU-22          [-1, 160, 55, 55]               0
           Conv2d-23          [-1, 272, 55, 55]          43,520
      BatchNorm2d-24          [-1, 272, 55, 55]             544
             ReLU-25          [-1, 304, 55, 55]               0
            Block-26          [-1, 304, 55, 55]               0
           Conv2d-27          [-1, 160, 55, 55]          48,640
      BatchNorm2d-28          [-1, 160, 55, 55]             320
             ReLU-29          [-1, 160, 55, 55]               0
           Conv2d-30          [-1, 160, 55, 55]           5,760
      BatchNorm2d-31          [-1, 160, 55, 55]             320
             ReLU-32          [-1, 160, 55, 55]               0
           Conv2d-33          [-1, 272, 55, 55]          43,520
      BatchNorm2d-34          [-1, 272, 55, 55]             544
             ReLU-35          [-1, 320, 55, 55]               0
            Block-36          [-1, 320, 55, 55]               0
           Conv2d-37          [-1, 320, 55, 55]         102,400
      BatchNorm2d-38          [-1, 320, 55, 55]             640
             ReLU-39          [-1, 320, 55, 55]               0
           Conv2d-40          [-1, 320, 28, 28]          23,040
      BatchNorm2d-41          [-1, 320, 28, 28]             640
             ReLU-42          [-1, 320, 28, 28]               0
           Conv2d-43          [-1, 544, 28, 28]         174,080
      BatchNorm2d-44          [-1, 544, 28, 28]           1,088
           Conv2d-45          [-1, 544, 28, 28]       1,566,720
      BatchNorm2d-46          [-1, 544, 28, 28]           1,088
             ReLU-47          [-1, 576, 28, 28]               0
            Block-48          [-1, 576, 28, 28]               0
           Conv2d-49          [-1, 320, 28, 28]         184,320
      BatchNorm2d-50          [-1, 320, 28, 28]             640
             ReLU-51          [-1, 320, 28, 28]               0
           Conv2d-52          [-1, 320, 28, 28]          23,040
      BatchNorm2d-53          [-1, 320, 28, 28]             640
             ReLU-54          [-1, 320, 28, 28]               0
           Conv2d-55          [-1, 544, 28, 28]         174,080
      BatchNorm2d-56          [-1, 544, 28, 28]           1,088
             ReLU-57          [-1, 608, 28, 28]               0
            Block-58          [-1, 608, 28, 28]               0
           Conv2d-59          [-1, 320, 28, 28]         194,560
      BatchNorm2d-60          [-1, 320, 28, 28]             640
             ReLU-61          [-1, 320, 28, 28]               0
           Conv2d-62          [-1, 320, 28, 28]          23,040
      BatchNorm2d-63          [-1, 320, 28, 28]             640
             ReLU-64          [-1, 320, 28, 28]               0
           Conv2d-65          [-1, 544, 28, 28]         174,080
      BatchNorm2d-66          [-1, 544, 28, 28]           1,088
             ReLU-67          [-1, 640, 28, 28]               0
            Block-68          [-1, 640, 28, 28]               0
           Conv2d-69          [-1, 320, 28, 28]         204,800
      BatchNorm2d-70          [-1, 320, 28, 28]             640
             ReLU-71          [-1, 320, 28, 28]               0
           Conv2d-72          [-1, 320, 28, 28]          23,040
      BatchNorm2d-73          [-1, 320, 28, 28]             640
             ReLU-74          [-1, 320, 28, 28]               0
           Conv2d-75          [-1, 544, 28, 28]         174,080
      BatchNorm2d-76          [-1, 544, 28, 28]           1,088
             ReLU-77          [-1, 672, 28, 28]               0
            Block-78          [-1, 672, 28, 28]               0
           Conv2d-79          [-1, 320, 28, 28]         215,040
      BatchNorm2d-80          [-1, 320, 28, 28]             640
             ReLU-81          [-1, 320, 28, 28]               0
           Conv2d-82          [-1, 320, 28, 28]          23,040
      BatchNorm2d-83          [-1, 320, 28, 28]             640
             ReLU-84          [-1, 320, 28, 28]               0
           Conv2d-85          [-1, 544, 28, 28]         174,080
      BatchNorm2d-86          [-1, 544, 28, 28]           1,088
             ReLU-87          [-1, 704, 28, 28]               0
            Block-88          [-1, 704, 28, 28]               0
           Conv2d-89          [-1, 320, 28, 28]         225,280
      BatchNorm2d-90          [-1, 320, 28, 28]             640
             ReLU-91          [-1, 320, 28, 28]               0
           Conv2d-92          [-1, 320, 28, 28]          23,040
      BatchNorm2d-93          [-1, 320, 28, 28]             640
             ReLU-94          [-1, 320, 28, 28]               0
           Conv2d-95          [-1, 544, 28, 28]         174,080
      BatchNorm2d-96          [-1, 544, 28, 28]           1,088
             ReLU-97          [-1, 736, 28, 28]               0
            Block-98          [-1, 736, 28, 28]               0
           Conv2d-99          [-1, 640, 28, 28]         471,040
     BatchNorm2d-100          [-1, 640, 28, 28]           1,280
            ReLU-101          [-1, 640, 28, 28]               0
          Conv2d-102          [-1, 640, 14, 14]          92,160
     BatchNorm2d-103          [-1, 640, 14, 14]           1,280
            ReLU-104          [-1, 640, 14, 14]               0
          Conv2d-105         [-1, 1056, 14, 14]         675,840
     BatchNorm2d-106         [-1, 1056, 14, 14]           2,112
          Conv2d-107         [-1, 1056, 14, 14]       6,994,944
     BatchNorm2d-108         [-1, 1056, 14, 14]           2,112
            ReLU-109         [-1, 1088, 14, 14]               0
           Block-110         [-1, 1088, 14, 14]               0
          Conv2d-111          [-1, 640, 14, 14]         696,320
     BatchNorm2d-112          [-1, 640, 14, 14]           1,280
            ReLU-113          [-1, 640, 14, 14]               0
          Conv2d-114          [-1, 640, 14, 14]          92,160
     BatchNorm2d-115          [-1, 640, 14, 14]           1,280
            ReLU-116          [-1, 640, 14, 14]               0
          Conv2d-117         [-1, 1056, 14, 14]         675,840
     BatchNorm2d-118         [-1, 1056, 14, 14]           2,112
            ReLU-119         [-1, 1120, 14, 14]               0
           Block-120         [-1, 1120, 14, 14]               0
          Conv2d-121          [-1, 640, 14, 14]         716,800
     BatchNorm2d-122          [-1, 640, 14, 14]           1,280
            ReLU-123          [-1, 640, 14, 14]               0
          Conv2d-124          [-1, 640, 14, 14]          92,160
     BatchNorm2d-125          [-1, 640, 14, 14]           1,280
            ReLU-126          [-1, 640, 14, 14]               0
          Conv2d-127         [-1, 1056, 14, 14]         675,840
     BatchNorm2d-128         [-1, 1056, 14, 14]           2,112
            ReLU-129         [-1, 1152, 14, 14]               0
           Block-130         [-1, 1152, 14, 14]               0
          Conv2d-131          [-1, 640, 14, 14]         737,280
     BatchNorm2d-132          [-1, 640, 14, 14]           1,280
            ReLU-133          [-1, 640, 14, 14]               0
          Conv2d-134          [-1, 640, 14, 14]          92,160
     BatchNorm2d-135          [-1, 640, 14, 14]           1,280
            ReLU-136          [-1, 640, 14, 14]               0
          Conv2d-137         [-1, 1056, 14, 14]         675,840
     BatchNorm2d-138         [-1, 1056, 14, 14]           2,112
            ReLU-139         [-1, 1184, 14, 14]               0
           Block-140         [-1, 1184, 14, 14]               0
          Conv2d-141          [-1, 640, 14, 14]         757,760
     BatchNorm2d-142          [-1, 640, 14, 14]           1,280
            ReLU-143          [-1, 640, 14, 14]               0
          Conv2d-144          [-1, 640, 14, 14]          92,160
     BatchNorm2d-145          [-1, 640, 14, 14]           1,280
            ReLU-146          [-1, 640, 14, 14]               0
          Conv2d-147         [-1, 1056, 14, 14]         675,840
     BatchNorm2d-148         [-1, 1056, 14, 14]           2,112
            ReLU-149         [-1, 1216, 14, 14]               0
           Block-150         [-1, 1216, 14, 14]               0
          Conv2d-151          [-1, 640, 14, 14]         778,240
     BatchNorm2d-152          [-1, 640, 14, 14]           1,280
            ReLU-153          [-1, 640, 14, 14]               0
          Conv2d-154          [-1, 640, 14, 14]          92,160
     BatchNorm2d-155          [-1, 640, 14, 14]           1,280
            ReLU-156          [-1, 640, 14, 14]               0
          Conv2d-157         [-1, 1056, 14, 14]         675,840
     BatchNorm2d-158         [-1, 1056, 14, 14]           2,112
            ReLU-159         [-1, 1248, 14, 14]               0
           Block-160         [-1, 1248, 14, 14]               0
          Conv2d-161          [-1, 640, 14, 14]         798,720
     BatchNorm2d-162          [-1, 640, 14, 14]           1,280
            ReLU-163          [-1, 640, 14, 14]               0
          Conv2d-164          [-1, 640, 14, 14]          92,160
     BatchNorm2d-165          [-1, 640, 14, 14]           1,280
            ReLU-166          [-1, 640, 14, 14]               0
          Conv2d-167         [-1, 1056, 14, 14]         675,840
     BatchNorm2d-168         [-1, 1056, 14, 14]           2,112
            ReLU-169         [-1, 1280, 14, 14]               0
           Block-170         [-1, 1280, 14, 14]               0
          Conv2d-171          [-1, 640, 14, 14]         819,200
     BatchNorm2d-172          [-1, 640, 14, 14]           1,280
            ReLU-173          [-1, 640, 14, 14]               0
          Conv2d-174          [-1, 640, 14, 14]          92,160
     BatchNorm2d-175          [-1, 640, 14, 14]           1,280
            ReLU-176          [-1, 640, 14, 14]               0
          Conv2d-177         [-1, 1056, 14, 14]         675,840
     BatchNorm2d-178         [-1, 1056, 14, 14]           2,112
            ReLU-179         [-1, 1312, 14, 14]               0
           Block-180         [-1, 1312, 14, 14]               0
          Conv2d-181          [-1, 640, 14, 14]         839,680
     BatchNorm2d-182          [-1, 640, 14, 14]           1,280
            ReLU-183          [-1, 640, 14, 14]               0
          Conv2d-184          [-1, 640, 14, 14]          92,160
     BatchNorm2d-185          [-1, 640, 14, 14]           1,280
            ReLU-186          [-1, 640, 14, 14]               0
          Conv2d-187         [-1, 1056, 14, 14]         675,840
     BatchNorm2d-188         [-1, 1056, 14, 14]           2,112
            ReLU-189         [-1, 1344, 14, 14]               0
           Block-190         [-1, 1344, 14, 14]               0
          Conv2d-191          [-1, 640, 14, 14]         860,160
     BatchNorm2d-192          [-1, 640, 14, 14]           1,280
            ReLU-193          [-1, 640, 14, 14]               0
          Conv2d-194          [-1, 640, 14, 14]          92,160
     BatchNorm2d-195          [-1, 640, 14, 14]           1,280
            ReLU-196          [-1, 640, 14, 14]               0
          Conv2d-197         [-1, 1056, 14, 14]         675,840
     BatchNorm2d-198         [-1, 1056, 14, 14]           2,112
            ReLU-199         [-1, 1376, 14, 14]               0
           Block-200         [-1, 1376, 14, 14]               0
          Conv2d-201          [-1, 640, 14, 14]         880,640
     BatchNorm2d-202          [-1, 640, 14, 14]           1,280
            ReLU-203          [-1, 640, 14, 14]               0
          Conv2d-204          [-1, 640, 14, 14]          92,160
     BatchNorm2d-205          [-1, 640, 14, 14]           1,280
            ReLU-206          [-1, 640, 14, 14]               0
          Conv2d-207         [-1, 1056, 14, 14]         675,840
     BatchNorm2d-208         [-1, 1056, 14, 14]           2,112
            ReLU-209         [-1, 1408, 14, 14]               0
           Block-210         [-1, 1408, 14, 14]               0
          Conv2d-211          [-1, 640, 14, 14]         901,120
     BatchNorm2d-212          [-1, 640, 14, 14]           1,280
            ReLU-213          [-1, 640, 14, 14]               0
          Conv2d-214          [-1, 640, 14, 14]          92,160
     BatchNorm2d-215          [-1, 640, 14, 14]           1,280
            ReLU-216          [-1, 640, 14, 14]               0
          Conv2d-217         [-1, 1056, 14, 14]         675,840
     BatchNorm2d-218         [-1, 1056, 14, 14]           2,112
            ReLU-219         [-1, 1440, 14, 14]               0
           Block-220         [-1, 1440, 14, 14]               0
          Conv2d-221          [-1, 640, 14, 14]         921,600
     BatchNorm2d-222          [-1, 640, 14, 14]           1,280
            ReLU-223          [-1, 640, 14, 14]               0
          Conv2d-224          [-1, 640, 14, 14]          92,160
     BatchNorm2d-225          [-1, 640, 14, 14]           1,280
            ReLU-226          [-1, 640, 14, 14]               0
          Conv2d-227         [-1, 1056, 14, 14]         675,840
     BatchNorm2d-228         [-1, 1056, 14, 14]           2,112
            ReLU-229         [-1, 1472, 14, 14]               0
           Block-230         [-1, 1472, 14, 14]               0
          Conv2d-231          [-1, 640, 14, 14]         942,080
     BatchNorm2d-232          [-1, 640, 14, 14]           1,280
            ReLU-233          [-1, 640, 14, 14]               0
          Conv2d-234          [-1, 640, 14, 14]          92,160
     BatchNorm2d-235          [-1, 640, 14, 14]           1,280
            ReLU-236          [-1, 640, 14, 14]               0
          Conv2d-237         [-1, 1056, 14, 14]         675,840
     BatchNorm2d-238         [-1, 1056, 14, 14]           2,112
            ReLU-239         [-1, 1504, 14, 14]               0
           Block-240         [-1, 1504, 14, 14]               0
          Conv2d-241          [-1, 640, 14, 14]         962,560
     BatchNorm2d-242          [-1, 640, 14, 14]           1,280
            ReLU-243          [-1, 640, 14, 14]               0
          Conv2d-244          [-1, 640, 14, 14]          92,160
     BatchNorm2d-245          [-1, 640, 14, 14]           1,280
            ReLU-246          [-1, 640, 14, 14]               0
          Conv2d-247         [-1, 1056, 14, 14]         675,840
     BatchNorm2d-248         [-1, 1056, 14, 14]           2,112
            ReLU-249         [-1, 1536, 14, 14]               0
           Block-250         [-1, 1536, 14, 14]               0
          Conv2d-251          [-1, 640, 14, 14]         983,040
     BatchNorm2d-252          [-1, 640, 14, 14]           1,280
            ReLU-253          [-1, 640, 14, 14]               0
          Conv2d-254          [-1, 640, 14, 14]          92,160
     BatchNorm2d-255          [-1, 640, 14, 14]           1,280
            ReLU-256          [-1, 640, 14, 14]               0
          Conv2d-257         [-1, 1056, 14, 14]         675,840
     BatchNorm2d-258         [-1, 1056, 14, 14]           2,112
            ReLU-259         [-1, 1568, 14, 14]               0
           Block-260         [-1, 1568, 14, 14]               0
          Conv2d-261          [-1, 640, 14, 14]       1,003,520
     BatchNorm2d-262          [-1, 640, 14, 14]           1,280
            ReLU-263          [-1, 640, 14, 14]               0
          Conv2d-264          [-1, 640, 14, 14]          92,160
     BatchNorm2d-265          [-1, 640, 14, 14]           1,280
            ReLU-266          [-1, 640, 14, 14]               0
          Conv2d-267         [-1, 1056, 14, 14]         675,840
     BatchNorm2d-268         [-1, 1056, 14, 14]           2,112
            ReLU-269         [-1, 1600, 14, 14]               0
           Block-270         [-1, 1600, 14, 14]               0
          Conv2d-271          [-1, 640, 14, 14]       1,024,000
     BatchNorm2d-272          [-1, 640, 14, 14]           1,280
            ReLU-273          [-1, 640, 14, 14]               0
          Conv2d-274          [-1, 640, 14, 14]          92,160
     BatchNorm2d-275          [-1, 640, 14, 14]           1,280
            ReLU-276          [-1, 640, 14, 14]               0
          Conv2d-277         [-1, 1056, 14, 14]         675,840
     BatchNorm2d-278         [-1, 1056, 14, 14]           2,112
            ReLU-279         [-1, 1632, 14, 14]               0
           Block-280         [-1, 1632, 14, 14]               0
          Conv2d-281          [-1, 640, 14, 14]       1,044,480
     BatchNorm2d-282          [-1, 640, 14, 14]           1,280
            ReLU-283          [-1, 640, 14, 14]               0
          Conv2d-284          [-1, 640, 14, 14]          92,160
     BatchNorm2d-285          [-1, 640, 14, 14]           1,280
            ReLU-286          [-1, 640, 14, 14]               0
          Conv2d-287         [-1, 1056, 14, 14]         675,840
     BatchNorm2d-288         [-1, 1056, 14, 14]           2,112
            ReLU-289         [-1, 1664, 14, 14]               0
           Block-290         [-1, 1664, 14, 14]               0
          Conv2d-291          [-1, 640, 14, 14]       1,064,960
     BatchNorm2d-292          [-1, 640, 14, 14]           1,280
            ReLU-293          [-1, 640, 14, 14]               0
          Conv2d-294          [-1, 640, 14, 14]          92,160
     BatchNorm2d-295          [-1, 640, 14, 14]           1,280
            ReLU-296          [-1, 640, 14, 14]               0
          Conv2d-297         [-1, 1056, 14, 14]         675,840
     BatchNorm2d-298         [-1, 1056, 14, 14]           2,112
            ReLU-299         [-1, 1696, 14, 14]               0
           Block-300         [-1, 1696, 14, 14]               0
          Conv2d-301         [-1, 1280, 14, 14]       2,170,880
     BatchNorm2d-302         [-1, 1280, 14, 14]           2,560
            ReLU-303         [-1, 1280, 14, 14]               0
          Conv2d-304           [-1, 1280, 7, 7]         368,640
     BatchNorm2d-305           [-1, 1280, 7, 7]           2,560
            ReLU-306           [-1, 1280, 7, 7]               0
          Conv2d-307           [-1, 2176, 7, 7]       2,785,280
     BatchNorm2d-308           [-1, 2176, 7, 7]           4,352
          Conv2d-309           [-1, 2176, 7, 7]      33,214,464
     BatchNorm2d-310           [-1, 2176, 7, 7]           4,352
            ReLU-311           [-1, 2304, 7, 7]               0
           Block-312           [-1, 2304, 7, 7]               0
          Conv2d-313           [-1, 1280, 7, 7]       2,949,120
     BatchNorm2d-314           [-1, 1280, 7, 7]           2,560
            ReLU-315           [-1, 1280, 7, 7]               0
          Conv2d-316           [-1, 1280, 7, 7]         368,640
     BatchNorm2d-317           [-1, 1280, 7, 7]           2,560
            ReLU-318           [-1, 1280, 7, 7]               0
          Conv2d-319           [-1, 2176, 7, 7]       2,785,280
     BatchNorm2d-320           [-1, 2176, 7, 7]           4,352
            ReLU-321           [-1, 2432, 7, 7]               0
           Block-322           [-1, 2432, 7, 7]               0
          Conv2d-323           [-1, 1280, 7, 7]       3,112,960
     BatchNorm2d-324           [-1, 1280, 7, 7]           2,560
            ReLU-325           [-1, 1280, 7, 7]               0
          Conv2d-326           [-1, 1280, 7, 7]         368,640
     BatchNorm2d-327           [-1, 1280, 7, 7]           2,560
            ReLU-328           [-1, 1280, 7, 7]               0
          Conv2d-329           [-1, 2176, 7, 7]       2,785,280
     BatchNorm2d-330           [-1, 2176, 7, 7]           4,352
            ReLU-331           [-1, 2560, 7, 7]               0
           Block-332           [-1, 2560, 7, 7]               0
AdaptiveAvgPool2d-333           [-1, 2560, 1, 1]               0
          Linear-334                    [-1, 4]          10,244
================================================================
Total params: 95,008,356
Trainable params: 95,008,356
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 0.57
Forward/backward pass size (MB): 664.46
Params size (MB): 362.43
Estimated Total Size (MB): 1027.47
----------------------------------------------------------------
# 编写训练函数
def train(dataloader,model,loss_fn,optimizer):
    size = len(dataloader.dataset)
    num_batches = len(dataloader)
 
    train_acc,train_loss = 0,0
 
    for X,y in dataloader:
        X,y = X.to(device),y.to(device)
 
        pred = model(X)
        loss = loss_fn(pred,y)
 
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
 
        train_loss += loss.item()
        train_acc += (pred.argmax(1) == y).type(torch.float).sum().item()
 
    train_loss /= num_batches
    train_acc /= size
 
    return train_acc,train_loss
# 编写测试函数
def test(dataloader, model, loss_fn):
    size = len(dataloader.dataset)  # 测试集的大小
    num_batches = len(dataloader)  # 批次数目, (size/batch_size,向上取整)
    test_loss, test_acc = 0, 0
 
    # 当不进行训练时,停止梯度更新,节省计算内存消耗
    with torch.no_grad():
        for imgs, target in dataloader:
            imgs, target = imgs.to(device), target.to(device)
 
            # 计算loss
            target_pred = model(imgs)
            loss = loss_fn(target_pred, target)
 
            test_loss += loss.item()
            test_acc += (target_pred.argmax(1) == target).type(torch.float).sum().item()
 
    test_acc /= size
    test_loss /= num_batches
 
    return test_acc, test_loss

import copy

loss_fn = nn.CrossEntropyLoss()
learn_rate = 1e-4
# SGD与Adam优化器,选择其中一个
# opt = torch.optim.SGD(model.parameters(),lr=learn_rate)
opt = torch.optim.Adam(model.parameters(),lr=learn_rate)

scheduler=torch.optim.lr_scheduler.StepLR(opt,step_size=1,gamma=0.9)  #定义学习率高度器
 
epochs = 100    #设置训练模型的最大轮数为100,但可能到不了100
patience=10     #早停的耐心值,即如果模型连续10个周期没有准确率提升,则跳出训练

    
train_loss=[]             
train_acc=[]
test_loss=[]
test_acc=[]
best_acc = 0              #设置一个最佳的准确率,作为最佳模型的判别指标
no_improve_epoch=0        #用于跟踪准确率是否提升的计数器
epoch=0                   #用于统计最终的训练模型的轮数,这里设置初始值为0;为绘图作准备,这里的绘图范围不是epochs = 100

#开始训练
for epoch in range(epochs):
 
    model.train()
    epoch_train_acc,epoch_train_loss = train(train_dl,model,loss_fn,opt)
 
    model.eval()
    epoch_test_acc,epoch_test_loss = test(test_dl,model,loss_fn)
       
        
        
    if epoch_test_acc > best_acc:
        best_acc = epoch_test_acc
        best_model = copy.deepcopy(model)
        
        
        
        no_improve_epoch=0   #重置计数器
        #保存最佳模型的检查点
        PATH='./J4_best_model(J4_DNF98).pth'
        torch.save({
            'epoch':epoch,
            'model_state_dict':best_model.state_dict(),
            'optimizer_state_dict':opt.state_dict(),
            'loss':epoch_test_loss,
        },PATH)
    else:
        no_improve_epoch += 1
     
        
    if no_improve_epoch >= patience:
        print(f"Early stoping triggered at epoch {epoch+1}")
        break   #早停
 
    train_acc.append(epoch_train_acc)
    train_loss.append(epoch_train_loss)
    test_acc.append(epoch_test_acc)
    test_loss.append(epoch_test_loss)
 
    scheduler.step()     #更新学习率


    lr = opt.state_dict()['param_groups'][0]['lr']
 
    template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%, Test_loss:{:.3f}, Lr:{:.2E}')
    print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss,epoch_test_acc*100, epoch_test_loss, lr))
 
# 保存最佳模型到文件中
PATH='./j4_best_model_DNF98.pth'     #保存的参数文件名
torch.save(model.state_dict(),PATH)
    
print('Done')
print(epoch)
print('no_improve_epoch:',no_improve_epoch)

代码输出:

Epoch: 1, Train_acc:37.4%, Train_loss:1.406, Test_acc:50.4%, Test_loss:1.136, Lr:9.00E-05
Epoch: 2, Train_acc:59.3%, Train_loss:0.960, Test_acc:60.2%, Test_loss:1.260, Lr:8.10E-05
Epoch: 3, Train_acc:70.1%, Train_loss:0.801, Test_acc:69.9%, Test_loss:0.913, Lr:7.29E-05
Epoch: 4, Train_acc:75.0%, Train_loss:0.624, Test_acc:70.8%, Test_loss:0.926, Lr:6.56E-05
Epoch: 5, Train_acc:75.7%, Train_loss:0.629, Test_acc:51.3%, Test_loss:1.493, Lr:5.90E-05
Epoch: 6, Train_acc:81.2%, Train_loss:0.467, Test_acc:73.5%, Test_loss:0.799, Lr:5.31E-05
Epoch: 7, Train_acc:85.6%, Train_loss:0.373, Test_acc:75.2%, Test_loss:0.684, Lr:4.78E-05
Epoch: 8, Train_acc:88.7%, Train_loss:0.324, Test_acc:79.6%, Test_loss:0.649, Lr:4.30E-05
Epoch: 9, Train_acc:88.5%, Train_loss:0.330, Test_acc:78.8%, Test_loss:0.687, Lr:3.87E-05
Epoch:10, Train_acc:90.7%, Train_loss:0.268, Test_acc:81.4%, Test_loss:0.597, Lr:3.49E-05
Epoch:11, Train_acc:93.4%, Train_loss:0.187, Test_acc:83.2%, Test_loss:0.613, Lr:3.14E-05
Epoch:12, Train_acc:93.4%, Train_loss:0.221, Test_acc:85.8%, Test_loss:0.573, Lr:2.82E-05
Epoch:13, Train_acc:92.9%, Train_loss:0.183, Test_acc:83.2%, Test_loss:0.504, Lr:2.54E-05
Epoch:14, Train_acc:96.5%, Train_loss:0.135, Test_acc:80.5%, Test_loss:0.590, Lr:2.29E-05
Epoch:15, Train_acc:92.7%, Train_loss:0.205, Test_acc:84.1%, Test_loss:0.456, Lr:2.06E-05
Epoch:16, Train_acc:97.1%, Train_loss:0.102, Test_acc:81.4%, Test_loss:0.907, Lr:1.85E-05
Epoch:17, Train_acc:96.0%, Train_loss:0.118, Test_acc:86.7%, Test_loss:0.571, Lr:1.67E-05
Epoch:18, Train_acc:97.1%, Train_loss:0.085, Test_acc:84.1%, Test_loss:0.512, Lr:1.50E-05
Epoch:19, Train_acc:98.2%, Train_loss:0.070, Test_acc:82.3%, Test_loss:0.498, Lr:1.35E-05
Epoch:20, Train_acc:97.6%, Train_loss:0.064, Test_acc:85.0%, Test_loss:0.524, Lr:1.22E-05
Epoch:21, Train_acc:98.0%, Train_loss:0.059, Test_acc:86.7%, Test_loss:0.620, Lr:1.09E-05
Epoch:22, Train_acc:99.1%, Train_loss:0.048, Test_acc:86.7%, Test_loss:0.484, Lr:9.85E-06
Epoch:23, Train_acc:98.2%, Train_loss:0.056, Test_acc:87.6%, Test_loss:0.506, Lr:8.86E-06
Epoch:24, Train_acc:99.3%, Train_loss:0.034, Test_acc:85.0%, Test_loss:0.396, Lr:7.98E-06
Epoch:25, Train_acc:98.5%, Train_loss:0.063, Test_acc:85.0%, Test_loss:0.475, Lr:7.18E-06
Epoch:26, Train_acc:99.1%, Train_loss:0.039, Test_acc:84.1%, Test_loss:0.558, Lr:6.46E-06
Epoch:27, Train_acc:98.2%, Train_loss:0.048, Test_acc:86.7%, Test_loss:0.718, Lr:5.81E-06
Epoch:28, Train_acc:99.3%, Train_loss:0.027, Test_acc:86.7%, Test_loss:0.462, Lr:5.23E-06
Epoch:29, Train_acc:98.9%, Train_loss:0.033, Test_acc:86.7%, Test_loss:0.868, Lr:4.71E-06
Epoch:30, Train_acc:99.6%, Train_loss:0.026, Test_acc:87.6%, Test_loss:0.451, Lr:4.24E-06
Epoch:31, Train_acc:99.1%, Train_loss:0.038, Test_acc:85.8%, Test_loss:0.471, Lr:3.82E-06
Epoch:32, Train_acc:99.3%, Train_loss:0.029, Test_acc:86.7%, Test_loss:0.459, Lr:3.43E-06
Epoch:33, Train_acc:98.5%, Train_loss:0.052, Test_acc:89.4%, Test_loss:0.484, Lr:3.09E-06
Epoch:34, Train_acc:98.9%, Train_loss:0.048, Test_acc:88.5%, Test_loss:0.484, Lr:2.78E-06
Epoch:35, Train_acc:98.2%, Train_loss:0.104, Test_acc:86.7%, Test_loss:0.493, Lr:2.50E-06
Epoch:36, Train_acc:99.3%, Train_loss:0.029, Test_acc:87.6%, Test_loss:0.450, Lr:2.25E-06
Epoch:37, Train_acc:99.8%, Train_loss:0.027, Test_acc:87.6%, Test_loss:0.505, Lr:2.03E-06
Epoch:38, Train_acc:99.6%, Train_loss:0.020, Test_acc:87.6%, Test_loss:0.438, Lr:1.82E-06
Epoch:39, Train_acc:99.6%, Train_loss:0.032, Test_acc:87.6%, Test_loss:0.474, Lr:1.64E-06
Epoch:40, Train_acc:99.3%, Train_loss:0.024, Test_acc:85.8%, Test_loss:0.497, Lr:1.48E-06
Epoch:41, Train_acc:99.1%, Train_loss:0.033, Test_acc:85.0%, Test_loss:0.486, Lr:1.33E-06
Epoch:42, Train_acc:100.0%, Train_loss:0.013, Test_acc:86.7%, Test_loss:0.443, Lr:1.20E-06
Early stoping triggered at epoch 43
Done
42
no_improve_epoch: 10
# 结果可视化
# Loss与Accuracy图

import matplotlib.pyplot as plt
#隐藏警告
import warnings
warnings.filterwarnings("ignore")               #忽略警告信息
plt.rcParams['font.sans-serif']    = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False      # 用来正常显示负号
plt.rcParams['figure.dpi']         = 100        #分辨率
 
epochs_range = range(epoch)
print(epochs_range) 
    
plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)
 
plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')
 
plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

代码输出:

range(0, 42)

在这里插入图片描述

# 预测
from PIL import Image 

classes = list(total_data.class_to_idx)

def predict_one_image(image_path, model, transform, classes):
    
    test_img = Image.open(image_path).convert('RGB')
    plt.imshow(test_img)  # 展示预测的图片

    test_img = transform(test_img)
    img = test_img.to(device).unsqueeze(0)
    
    model.eval()
    output = model(img)

    _,pred = torch.max(output,1)
    pred_class = classes[pred]
    print(f'预测结果是:{pred_class}')
import os
from pathlib import Path
import random


#下面定义了两种同名的mage_path(data_dir)函数,是为了从所有的图片的随机选择一张图片,这两种函数都是可以使用的

# def image_path(data_dir):
#     file_list=os.listdir(data_dir)                       #列出四个分类标签
#     data_file_dir=random.choice(file_list)               #从四个分类标签中随机选择一个
#     data_dir=Path(data_dir)                              #data_dir是字符串,要转换为Path对象
#     data_file_dir=Path(data_file_dir)                    #data_file_dir是字符串,要转换为Path对象
#     image_file_path=data_dir.joinpath(data_file_dir)     #拼接路径
#     data_file_paths=image_file_path.iterdir()            #罗列文件夹的内容
#     data_file_paths=list(data_file_paths)                #要转换为列表
#     file=random.choice(data_file_paths)                  #从所有的图像中随机选择一张
#     return file


image=[]
def image_path(data_dir):
    file_list=os.listdir(data_dir)                       #列出四个分类标签
    data_file_dir=file_list                              #从四个分类标签中随机选择一个
    data_dir=Path(data_dir)
    for i in data_file_dir:
        i=Path(i)
        image_file_path=data_dir.joinpath(i)            #拼接路径
        data_file_paths=image_file_path.iterdir()       #罗列文件夹的内容
        data_file_paths=list(data_file_paths)           #要转换为列表
        image.append(data_file_paths)
    file=random.choice(image)                           #从所有的图像中随机选择一类
    file=random.choice(file)                            #从选择的类中随机选择一张图片
    return file
data_dir='J3/bird_photos'
image_path=image_path(data_dir)
image_path

代码输出:

WindowsPath('J3/bird_photos/Black Skimmer/015.jpg')
# 预测训练集中的某张照片
predict_one_image(image_path=image_path, 
                  model=model, 
                  transform=train_transforms, 
                  classes=classes)

代码输出:

预测结果是:Black Skimmer

在这里插入图片描述

# 模型评估
# 将参数加载到model当中
best_model.load_state_dict(torch.load(PATH,map_location=device))
epoch_test_acc,epoch_test_loss=test(test_dl,best_model,loss_fn)
epoch_test_acc,epoch_test_loss

代码输出:

(0.8672566371681416, 0.49821303264858824)

三、总结
这次任务对我来说,属实有点困难。我曾经将残差连接和密集连接交替连接各个层,也想着先进行ResNet50V2,再进行DenseNet(或者是先进行DenseNet,再进行ResNet50V2),都没有成功。只好学习和运行别人成熟的模型了。

  • 3
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值