CellOracle|基因扰动研究基因功能|基因调控网络+虚拟干预

在gzh“生信小鹏”同步文章

论文来源:

  • 发表期刊:Nature
  • 发表时间:2023年2月23日
  • 论文题目:Dissecting cell identity via network inference and in silico gene perturbation
  • 研究团队:Kenji Kamimoto 等,华盛顿大学医学院

1. 研究背景与问题提出

细胞身份(Cell Identity)由基因调控网络(Gene Regulatory Network, GRN)决定,而GRN是由转录因子(Transcription Factors, TFs)调控基因表达构成的复杂网络。传统研究方法依赖于实验手段(如CRISPR筛选),但这些方法成本高、周期长,并且在某些生物体系(如人类胚胎)中难以实现。因此,

  • 如何仅基于未受扰动(wild-type)的单细胞数据,预测基因扰动后的细胞状态变化?
  • 如何实现可解释性强、可扩展的计算模拟方法?

为解决这些问题,作者提出了一种新的计算方法——CellOracle。该方法结合单细胞转录组(scRNA-seq)与单细胞染色质可及性(scATAC-seq)数据,推断GRN,并在无实验数据的情况下模拟TF的敲除(KO)或过表达(OE)对细胞身份的影响


2. CellOracle 方法简介

CellOracle 的核心思想是:

  1. 构建基因调控网络(GRN):利用 scATAC-seq 数据识别 TF 结合位点,并结合 scRNA-seq 数据,推断 TF-靶基因的调控关系。
  2. 基于GRN的信号传播模型:在推断出的GRN中,模拟TF敲除或过表达后,基因表达的全局变化。
  3. 计算细胞状态变化:通过矢量化方法,将基因表达变化映射到细胞轨迹中,预测细胞状态的转变方向。

3. 主要研究结论(结合 Figure 分析)

(1) Figure 1:CellOracle 方法的整体框架

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

生信小鹏

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值