原题目:Service Placement for Collaborative Edge Applications
目录:
1.应用场景
2.协同边缘服务放置(CESP)问题
3.优化对象
4. 求解算法
1. 应用场景
协同边缘应用,如多玩家AR游戏和联邦机器学习,要求分布式客户端通过消息交换协同工作以实现共同目标。
边缘应用程序要求多个分布式客户端协作完成一个任务,共享一个在所有客户端之间复制和同步的公共状态。典型例子:①AR多人游戏,如Facebook Horizon, 一组位于不同地理位置的玩家(即客户端)探索一个共同的虚拟世界,②联邦机器学习,分布式客户端收集观察结果并联合训练一个机器学习模型(使用共享模型权重),而不是将所有数据收集到一个中心位置进行处理。每个客户端由两部分组成:①运行在边缘节点上的服务实体(SE),②运行在用户设备上的用户实体(UE)。SE负责客户端状态和计算密集型任务,如AR游戏中的对象识别和跟踪,以及客户端之间的同步;UE负责收集客户端数据,并向客户端提供反馈。
2. 协同边缘服务放置(CESP)问题
边缘计算已被部署在各个行业,以处理由于本地处理资源受限而出现的情况,并基于远程云来处理大且不可预测延迟出现的情况。根据开放边缘计算倡议,边缘云能够通过开放、标准化的接口向近距离的任何用户提供计算/存储资源,允许同一地理区域(如一个城市)的一组边缘云形成共享的边缘资源池。在轻量级虚拟化技术的帮助下,边缘资源可以根据服务质量QoS需求和全系统优化目标来以细粒度被分配。
服务放置问题是在由一组边缘节点组成的边缘网络中确定每个客户端的SE的位置,以实现客户端的满意QoS和边缘网络的经济(廉价)操作。我们把这个问题称为协同边缘服务放置(CESP)问题,并认为这是一个丰富的协同边缘应用程序集的基础。
CESP问题难以解决,需要考虑以下相互冲突的因素:
①边缘节点在维护和运行成本上是异构的,因此为实现最佳经济运行需将SEs推向运行成本更 低的边缘节点;
②SE需要与其关联的UE进行数据交换,因此,将SE放置在UE附近可以提高客户端在通信延迟方面的QoS;
③SEs还需要和其他SEs交换数据,例如与其他客户端同步状态或与其他客户端协作完成任务,因此将通信频繁的SEs放置于距离较近的位置,可以为这些SEs的客户端提供更好的QoS;(这第三个因素是CESP独有的,所有这些内在交织在一起的因素使问题复杂化)
④由于边缘节点并不是有意设计来同时容纳大量的SE,特别是对于需要特定硬件的边缘应用,如GPU,需要更好地控制资源争用,者意味着每个边缘节点上不应该有过多的SE。
以往的研究未能综合考虑上述所有因素。一方面,对于边缘计算的研究主要集中在计算卸载技术和硬件/软件架构;边缘资源管理建议通常缺乏对协作边缘应用中客户端状态同步的具体考虑。另一方面,针对社交网络的跨服务器或分布式云的数据放置解决方案解决了网络流量或数据存储的优化,但忽略了边缘上下文中多个重要因素的影响,如激活成本和资源争用,这些因素从根本上改变了设置,并需要不同的方法。虽然已有文献的各种设置中已经广泛探索了一般服务放置问题,但目前还没有已知的算法可以解决CESP问题。
3. 优化对象
成本优化,考虑激活、放置、接近以及共址这四种类型的成本构建的成本模型。
①激活成本(activation cost)
对于每个边缘节点,如果至少存在一个SE被放置在其上,则必须支付静态激活成本。这样的激活成本通常表示边缘节点中的冷却或其他维护工作,而不管边缘节点上放置了多少SEs.
②放置成本(placement cost)
放置成本与SEs的创建有关,由SE在服务器上的运行和通信所产生。对于每一个客户,将其SE放在边缘节点p上运行时,使用计算和存储资源的货币成本为bu(pu)>0.
③接近成本(proximity cost)
一个客户端的接近性度量包括两部分:一是客户端(或其UE)与SE通信的及时性,二是客户端与其他客户端之间通信的及时性。为了优先考虑频繁通信,我们将UE与SE之间的通信频率和客户端之间的访问频率结合起来。我们注意到,客户与其访问站点AP之间的延迟实际上与放置决策无关。为了简单起见,我们将其从模型中忽略不计。
④共址成本(co-location cost)
共址成本是由位于同一边缘节点上的SEs之间存在资源争用而产生的。这被认为是不可避免的,因为边缘节点就不是为大规模资源多路复用而设计的,轻量级虚拟化通常很难实现完美的性能隔离。SE共址导致的性能下降可以用“膨胀”因子来描述,该因子被用来捕获在共享资源上运行的应用程序的性能。膨胀因子被定义为边缘节点上共存的应用程序的运行时间与在同一边缘节点上单独运行的应用程序的运行时间之比。根据文献中的性质,在我们的例子中,膨胀因子可以近似为共址SEs的数量,因为在同一个应用中的SEs是相同的。
4. 求解算法
在本文中,我们给出了CESP问题的一个形式化研究。我们特别做出以下四点贡献:
①我们用边缘网络的综合体成本模型来建模所识别的挑战,在此基础上,我们将CESP问题描述为一个组合优化问题,我们证明了它是NP困难的;
②我们对CESP问题进行了转换,提出了一种基于迭代求解一系列最小s-t切问题实例的有效算法,称为迭代展开移动(ITEM);
③对于CESP的在线版本,我们提出了一种基于最优停止理论的在线算法-OPTS,旨在优化ITEM和其定制版本之间的替换,以实现增量(部分)更新,并在系统稳定性约束下最大限度降低预期系统成本;
④我们用真实世界的数据轨迹进行了广泛的实验,已验证所提出算法的性能。结果表明:ITEM的性能非常接近理论最优解,比基线的性能好2倍以上,且收敛速度快。OPTS可以减少完整更新率(即ITEM的调用)的比例超过67%。