6 akshare 筛选近三年收益率在12%~18%的债券基金

利用akshare 筛选近三年收益率在12%~18%的债券基金,并且走势相对比较稳定的,代码如下

import akshare as ak
import pandas as pd
pd.set_option('display.max_columns', None)

#1年大概250个交易日
days = 250

# 获取所有基金的基本信息
fund_info = ak.fund_name_em()

fund_info = fund_info[fund_info['基金类型'].str.contains('债券')]
# print(fund_info)

# 遍历筛选出来的每个基金,计算最近3年的收益率
for code in fund_info['基金代码']:
    # 获取最近3年的基金累计净值
    fund_cumulative_nav = ak.fund_open_fund_info_em(symbol=code, indicator="累计净值走势")
    fund_cumulative_nav_test = fund_cumulative_nav[-days * 3:-days * 3+1]

    if not fund_cumulative_nav_test.empty:#3年前的记录需要存在
        fund_name = fund_info[fund_info['基金代码'] == code]['基金简称'].values[0]
        fund_cumulative_nav3 = fund_cumulative_nav[-days * 3:]
        # 计算最近3年的收益率
        cumulative_nav_returns3 = fund_cumulative_nav3.iloc[-1]['累计净值'] / fund_cumulative_nav3.iloc[0]['累计净值'] - 1

        fund_cumulative_nav2 = fund_cumulative_nav[-days * 2:]
        # 计算最近2年的收益率
        cumulative_nav_returns2 = fund_cumulative_nav2.iloc[-1]['累计净值'] / fund_cumulative_nav2.iloc[0]['累计净值'] - 1

        fund_cumulative_nav1 = fund_cumulative_nav[-days * 1:]
        # 计算最近1年的收益率
        cumulative_nav_returns1 = fund_cumulative_nav1.iloc[-1]['累计净值'] / fund_cumulative_nav1.iloc[0]['累计净值'] - 1

        # 如果近3年的收益率在12%~18%之间,则输出该基金的信息
        if (0.02 <= cumulative_nav_returns1 <= 0.06) and (0.06 <= cumulative_nav_returns2 <= 0.12) and (0.12 <= cumulative_nav_returns3 <= 0.18):
            print(f"{fund_name}({code}): 近3年收益率:{cumulative_nav_returns3:.2%}")

结果如下:

广发景宁债券A(000037): 近3年收益率:12.62%
融通增强收益债券A(000142): 近3年收益率:14.40%
工银添福债券A(000184): 近3年收益率:13.48%
工银添福债券B(000185): 近3年收益率:12.13%
兴业收益增强债券C(001258): 近3年收益率:16.97%
博时裕盈3个月定开债(001546): 近3年收益率:12.10%
博时裕泰纯债债券(001993): 近3年收益率:12.97%
华富安福债券(002412): 近3年收益率:16.91%
金鹰添利信用债债券A(002586): 近3年收益率:13.97%
金鹰添利信用债债券C(002587): 近3年收益率:13.45%
广发集丰债券A(002711): 近3年收益率:16.86%
广发集丰债券C(002712): 近3年收益率:15.52%
招商招兴3个月定开A(002756): 近3年收益率:15.54%
招商招兴3个月定开C(002757): 近3年收益率:14.87%
广发集源债券A(002925): 近3年收益率:12.22%
国联安添利增长债A(003275): 近3年收益率:17.19%
东兴兴利债券A(003545): 近3年收益率:12.16%
鑫元添利三个月定开债(004031): 近3年收益率:12.25%
华夏恒融债券(004063): 近3年收益率:14.13%
中融聚业定期开放债券(005637): 近3年收益率:13.58%
华夏鼎禄三个月定开债券A(005862): 近3年收益率:14.73%
华泰保兴尊利债券A(005908): 近3年收益率:13.00%
鑫元淳利定期开放债券(006142): 近3年收益率:12.29%
宝盈盈润纯债债券(006242): 近3年收益率:13.98%
建信润利增强债券A(006500): 近3年收益率:13.60%
南方畅利定开债发起式(006653): 近3年收益率:13.08%
南华瑞元定期开放债券(006667): 近3年收益率:13.51%
永赢宏益债券C(006708): 近3年收益率:14.78%
金鹰鑫日享债券A(006974): 近3年收益率:12.11%
华夏鼎琪三个月定开债券(007576): 近3年收益率:14.53%
招商添泽纯债C(007596): 近3年收益率:17.62%
汇安裕和纯债债券A(007611): 近3年收益率:13.45%
汇安裕和纯债债券C(007612): 近3年收益率:14.19%
泰达宏利永利债券(007640): 近3年收益率:13.05%
富国天盈债券(LOF)A(007762): 近3年收益率:12.01%
创金合信信用红利债券A(007828): 近3年收益率:13.73%
创金合信信用红利债券C(007829): 近3年收益率:12.35%
平安5-10年期政策性金融债A(007859): 近3年收益率:12.61%
平安5-10年期政策性金融债C(007860): 近3年收益率:12.35%
招商安心收益债券A(008383): 近3年收益率:12.34%
西部利得聚泰18个月定开债C(009019): 近3年收益率:15.88%
建信信用增强债券(LOF)A(165311): 近3年收益率:13.96%
建信信用增强债券(LOF)C(165314): 近3年收益率:14.19%
光大增利收益债券A(360008): 近3年收益率:12.80%
光大增利收益债券C(360009): 近3年收益率:12.13%
交银安心收益债券(519753): 近3年收益率:13.36%
华商收益增强债券A(630003): 近3年收益率:13.84%
华商收益增强债券B(630103): 近3年收益率:12.85%

结果可能稍有误差,因为采用的每年250个交易日,并不是刚好整整一年,可能会有一点误差。

### 使用 AKShare 获取和处理基金数据的方法 AKShare 是一个强大的金融数据接口工具,能够帮助用户轻松获取各类金融市场数据。以下是关于如何使用 AKShare 来获取和处理基金数据的具体方法。 #### 1. 获取基金列表 为了了解哪些基金可以通过 AKShare 查询,可以调用 `ak.fund_info_name()` 接口来获取 A 股市场上的基金代码及其对应的名称[^1]。 ```python import akshare as ak fund_list = ak.fund_info_name() print(fund_list) ``` 此代码片段将返回一个 DataFrame 对象,其中包含了所有可用的基金代码以及它们的名字。 --- #### 2. 获取 ETF 历史数据并计算技术指标 对于特定的 ETF 数据(例如电力 ETF),可以使用 `ak.fund_etf_hist_em` 函数获取其历史价格数据,并进一步对其进行技术分析。以下是一个完整的例子,展示如何获取指定时间段内的每日收盘价,并基于这些数据计算移动平均线 (MA)[^2]: ```python import numpy as np import talib as ta import akshare as ak # 获取某只 ETF 的历史数据 symbol = '561560' # 替换为你感兴趣的 ETF 代码 start_date = '20200501' end_date = '20240520' close = ak.fund_etf_hist_em( symbol=symbol, period='daily', start_date=start_date, end_date=end_date, adjust='qfq' ) # 定义要计算的技术指标 types = ['MA5', 'MA10', 'MA15', 'MA20'] for i in range(len(types)): close[types[i]] = ta.SMA(close['收盘'].values.astype(float), timeperiod=(i + 1) * 5) # 将结果保存到 Excel 文件中 close.to_excel('电力ETF(561560).xlsx', sheet_name='Sheet1', index=False) print(close.head()) ``` 上述代码不仅展示了如何提取 ETF 的历史数据,还演示了如何利用 TA-Lib 库计算简单的技术指标并将最终的结果导出至 Excel 表格文件中。 --- #### 3. 获取封闭式基金实时行情数据 除了开放式基金外,还可以通过 AKShare 获取封闭式基金的相关信息。下面是一段用于抓取新浪财经上所有封闭式基金当前行情数据的例子[^3]: ```python import pandas as pd import akshare as ak pd.set_option('display.unicode.ambiguous_as_wide', True) pd.set_option('display.unicode.east_asian_width', True) pd.set_option('display.max_columns', None) pd.set_option('display.max_rows', None) # 获取封闭式基金的数据 closed_funds_data = ak.fund_etf_category_sina(symbol="封闭式基金") # 导出 CSV 文件以便后续查阅 closed_funds_data.to_csv("sina_closed_funds.csv", encoding='utf-8-sig') print(closed_funds_data.head()) ``` 这段脚本不仅可以打印前几条记录供快速浏览,还会把整个数据集存储成本地 CSV 文件形式方便长期存档或者分享给他人。 --- ### 总结 以上介绍了三种常见的场景下如何借助 Python 和第三方库 AKShare 实现对不同类型基金数据的有效访问与初步加工操作。无论是基础性的查询还是深入的研究工作都能从中受益匪浅。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

HelloCode5110

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值