pandas-时序性数据运算

参考地址:https://pandas.pydata.org/pandas-docs/stable/reference/offset_frequency.html在这里插入图片描述
在这里插入图片描述

第四课 Pandas时序型数据分析
第三节 时序型数据运算
import pandas as pd
Timedelta
pd.Timedelta('1 day')
Timedelta('1 days 00:00:00')
pd.Timedelta('1 day 2 hours')
Timedelta('1 days 02:00:00')
pd.to_timedelta(['1 day', '1 day 2 hours'])
TimedeltaIndex(['1 days 00:00:00', '1 days 02:00:00'], dtype='timedelta64[ns]', freq=None)
运算
s = pd.Series(pd.date_range('2019-1-1', periods=10, freq='D'))
td = pd.Series([pd.Timedelta(days=i) for i in range(10)])
df = pd.DataFrame({
   'A': s, 'B': td})
df
A	B
0	2019-01-01	0 days
1	2019-01-02	1 days
2	2019-01-03	2 days
3	2019-01-04	3 days
4	2019-01-
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值