基于队列数据的RR及其95%CI计算

mytable=xtabs(~XAA+Class,data=mydata)#XAA为列变量名,即你的暴露因素,mydata为你的数据框
p.table=prop.table(mytable, 1)#其中‘1’为按照行计算发生率
chisq.test(mytable)#分析改暴露因素是否在组间存在差异
RR=p.table[2,2]/p.table[1,2]#计算RR值,该公式适合二分类的暴露变量,如果多分类,请自行举一反三
RR#输出值
a=1/mytable[1,1]+1/mytable[1,2]+
  1/mytable[2,1]+1/mytable[2,2]#计算lnRR的方差,具体公式流行病的书上有
CI=1.96*sqrt(a)#lnRR的95%CI
b1=log(RR)+CI
b2=log(RR)-CI
exp(b1)#反对数化
exp(b2)
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值