OR值和RR值

 

一、案例介绍

某专家想探究吸烟与肺癌的关系,应用成组设计的病例-对照研究进行考察。病例组108人中68人吸烟,对照组108人中49人吸烟。试估计吸烟者患肺癌的风险是不吸烟患肺癌的多少倍?并估计95%可信区间。数据如下图1:

图1

二、问题分析

本案例的分析目的是估计吸烟者患肺癌的风险是不吸烟患肺癌的多少倍,也就是计算吸烟与不吸烟患肺癌的相对危险度值(relative risk,RR值)。但是由于本案例是应用成组设计的病例-对照研究进行研究,所以不能直接计算RR值,需要计算比值比(odds ratio,OR值)来近似估计相对危险度。

测定相对危险度的调查研究主要有两大类型:队列研究和病例对照研究。

队列研究是对不同暴露水平的对象进行追踪观察,确定其疾病发生情况,通常周期较长,由于队列研究可以计算各组人群的发病率,所以可以直接计算相对危险度RR值。

RR值 = (a/ (a+b) ) / (c /(c+d))

病例-对照研究是根据研究对象目前状态(是否有病)将其分到病例组或对照组,然后回顾性地询问或调查研究对象过去的危险因素接触史,然后比较两组中暴露者所占的比例。在这类研究中,由于一般不能直接计算暴露人群和非暴露人群的发病率,所以不能直接计算相对危险度,通常需要通过计算OR值来近似估计相对危险度。

OR值= (a/b) / (c/d)

所以,本案例需要计算OR值来近似估计相对危险度。

三、软件操作及结果解读

(一)理论说明

OR值的实际意义与RR值类似,可以代表暴露组的发病危险是非暴露组的多少倍。当OR值的95%置信区间包括1时,表示该因素对疾病的发病率无影响;当OR值>1且95%置信区间不包括1时,表示该因素为危险因素,它使得发病率危险度增大;当OR值<1且95%置信区间不包括1时,表示该因素为保护因素,它使得发病危险度减少。

OR值计算如下:

OR值= (a/b) / (c/d)=(68/40)/(49/59)=2.0469

解放双手,可以使用软件进行计算。

(二)软件操作

在SPSSAU系统中,实验/医学研究模块,选择【OR值】,填写数据到相应位置,如下图2:

图2

(三)结果解读

1、OR值

SPSSAU输出OR值计算结果如下图3:

图3

从上图分析结果来看,OR值为2.0469>1,95.0% CI为1.188~3.527不包括1,说明吸烟与肺癌发生之间有关联,吸烟者患肺癌的风险为不吸烟者患肺癌2.0469倍。同时通过z 检验(z =2.5805,p =0.0099),说明OR值与数字1之间有统计学差异,即暴露组和对照组的风险程度明显不一样。

2、RR值

SPSSAU同时会输出RR值计算结果。但是RR值适用于队列研究,又称前瞻性研究、随访研究或发病率研究,本案例为实验-对照研究,不适合使用RR值估计相对危险度。但RR值分析与OR值分析类似,二者的区别仅在于适用条件以及计算公式上,如果有需要进行RR分析的案例,软件操作及结果解读过程与本案例类似。结果如下图4:

图4

四、结论

本案应用成组设计的病例-对照研究进行研究,探究吸烟者患肺癌的风险是不吸烟者患肺癌的多少倍。通过计算比值比(odds ratio,OR值)来近似估计相对危险度。结果显示,OR值为2.0469>1,95.0% CI为1.188~3.527不包括1,说明吸烟者患肺癌的风险为不吸烟者患肺癌2.0469倍。

五、知识小贴士

(1)队列研究与病例对照研究的区别是什么?

队列研究和病例对照研究都是流行病学研究中常用的方法,但它们有一些区别。

病例对照研究是一种回顾性研究,它比较了已经患病的个体和没有患病的个体在暴露于某种因素之前或之后的情况。这种方法可以计算出暴露组非暴露组的发病率之比,即比值比(odds ratio,OR值) 。

队列研究是一种前瞻性研究,它跟踪观察一组人群在一段时间内是否暴露于某种因素,并比较暴露组和非暴露组之间的发病率。这种方法可以计算出暴露组非暴露组的发病率之比,即相对危险度(relative risk,RR值) 。

(2)SE(ln(OR)或SE(ln(RR)的意义?

此两值代表OR或RR对数值的标准误,基本无实际意义,目的在于计算z 值,最终得到p 值;

SE(ln(OR)是指OR对数值的标准误值,z 值 = ln(OR) / SE(ln(OR);

SE(ln(RR)是指RR对数值的标准误值,z 值 = ln(RR) / SE(ln(RR)。

参考文献:

[1]颜红,徐勇勇.医学统计学.第3版[M].人民卫生出版社,2015

为了通过脉搏传感器结合MATLAB计算心率变异性(Heart Rate Variability, HRV),你需要经过数据采集、预处理以及分析几个步骤。 ### 一、硬件准备 首先需要一个能够准确记录心脏活动并转化为数字信号传输给计算机的设备——这里指的就是支持串口通信或者其他形式的数据通讯协议(例如I2C、SPI等)的心率监测仪或专门设计用于检测PPG(Photoplethysmography)特征点以推算出R-R间期信息变化趋势的腕带式脉搏血氧计。确保所选产品可以提供足够高分辨率的时间戳来表示每次心跳发生时刻,并能直接导出原始采样序列或者已经初步解析过的RR间隔数组。 ### 二、软件环境配置 将从上述装置获得的一系列时间戳送入MATLAB环境中做进一步运算前,得先搭建好必要的工具箱函数库: - 安装Signal Processing Toolbox Statistics and Machine Learning Toolbox ,这两个官方插件包含了大量针对生理信号滤波平滑化操作及统计特性提取的功能模块; - 若采用USB转UART桥接电路连接电脑端接收来自MCU控制板发送过来未经加工处理过的心拍周期,则还需额外加载instrument control toolbox以便于建立稳定可靠的物理链路; ### 三、算法流程概述 #### 数据导入与可视化检查 ```matlab % 假设你有一个文件 'ECG.mat', 其中含有变量 RRTimestamps 存储了所有检测到的有效峰顶位置对应的真实世界时标单位秒数 load('ECG.mat'); figure; plot(RRTimestamps); title('Raw RR Interval Timestamps'); xlabel('Index of Beat'); ylabel('Time (Seconds)'); ``` #### 预过滤异常 对初始获取的所有相邻两次跳动之间持续长度实施简单筛选规则去除明显错误读取结果如负情况或是超出正常范围太多倍的标准差个体: ```matlab rrIntervals = diff(RRTimestamps); meanRR = mean(rrIntervals); stdDevRR = std(rrIntervals); validIndices = abs(rrIntervals - meanRR) < 3 * stdDevRR; cleanedRRIntervals = rrIntervals(validIndices); hold on; plot(find(~validIndices)+1 ,rrIntervals(~validIndices),'rx'); % Mark outliers as red crosses in the previous figure. title('Filtered Outliers from RR Intervals') ``` #### 特征量计算 基于清理后的干净样本集开始正式求解各种反映自主神经系统活性程度高低差异性的量化指标比如NN50 count 或者 pNN50 ratio 等经典HRV测量项目。 ```matlab nn50Count = sum(abs(diff(cleanedRRIntervals)) >= 0.05); %[ms], if your data is originally in seconds convert it properly before calculation. pNN50Ratio = nn50Count / length(cleanedRRIntervals)*100; disp(['The number of interval differences greater than or equal to 50 ms:', num2str(nn50Count)]); disp(['Percentage of interval differences greater than or equal to 50 ms:',num2str(pNN50Ratio), '%']); ``` 以上只是一个简化版示例,在实际应用当中往往还需要更深入细致地考虑许多其他因素才能得出科学可靠的研究结论。而且除了上述列举出来的时域法之外还有频域变换(Fourier Transform)、非线性动力学建模等多种技术路径可供选择探索。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值