一、在面临香农公式被逼近极限,未来无线通信会朝着哪些方向发展?结合信息论谈一下自己的见解。
答:香农极限与冯诺依曼架构的瓶颈,也让计算与通信演化的方向朝量子计算、DNA存储、语义通信的方向延展。探索这些新的信息传递与处理模式,可以把信息的传递延伸到更加广阔的未知地带,如深海通信、深空通信、人体网络和分子网络等。这些研究的方向都为未来提供了新的增长与创新空间。
语义通信:
语义通信的概念是由Weaver和Shannon 在1948年发表的经典论文中首次提出,语义通信是面向信号语义的通信,其本质是传递由语义符号表达的信息,这些符号能够让接受者秒懂其中的含义。语义通信的信号接收双方凭借本地的语义知识库,通过传输极少的内容,各自分别编码和解码,实现大量信息的准确与快速传递。跟科幻剧和谍战剧中的黑科技传输形式类似,极少内容量的传输,就可以完成信息的传递,不仅降低信息传递和理解的时间,也能保证实时保真的通信质量。
无线AI:
未来,AI技术将赋能移动通信系统,通过与无线架构、无线数据、无线算法和无线应用结合,构建新型智能网络架构体系。AI原生的6G网络不仅仅是将AI技术作为一种优化工具,而是实现AI原生的新型无线网络架构和空口技术。
AI原生的6G网络通过赋能网络架构,实现接入网和核心网网元的智能化管理和部署实现,支持智能的多类型资源跨域管理。而AI原生的新空口技术能够通过调用AI算法支持无线资源的智能调度,实现实时的业务需求匹配,将AI需求考虑在接口协议栈的设计中。
二、在通信系统中,除了常见的高斯白噪声还有哪些噪声会对我们无线传输造成影响?
答:无线信道噪声相对于有用信号来说,通俗的讲就是干扰。如果噪声干扰不去除,就会造成信号失真,严重的会使得通信无法正确和有效的进行。例如图1,左边是一次正常通话时的信号波形,图1右边中除了有用信号波形,还有噪声干扰,导致通话产生错误,解调后的通话内容此时就会发生变化。
噪声可以笼统的称为随机的,不稳定的能量。它分为加性噪声和乘性噪声,乘性噪声随着信号的存在而存在,当信号消失后,乘性噪声也随之消失,大多以讨论加性噪声为主。
根据噪声来源,一般可分为三类:
1.人为噪声:指人类活动所产生的对通信造成干扰的各种噪声;
2.自然噪声:指自然界存在的各种电磁波源所产生的噪声;
3.内部噪声:指通信设备本身产生的各种噪声,来源于通信设备的各种电子器件、传输线、天线等。
根据噪声性质分类,噪声可分为单频噪声、脉冲噪声和起伏噪声,这三种噪声都是随机噪声。
1.单频噪声:噪声频谱特性可能是单一频率,也可能是窄带谱,其是一种连续波干扰;
2.脉冲噪声:是在时间上无规则的突发脉冲波形,其通常干扰时间短、脉冲幅度大、随机周期出现等;
3.起伏噪声:是一种连续波随机噪声,包括热噪声(白噪声)、散弹噪声和宇宙噪声,其特点是具有很宽的频带,并且始终存在,它是影响通信系统性能的主要因素。
加性噪声中,除去常见的高斯白噪声,主要还有:窄带高斯噪声,正弦信号加窄带高斯噪声,余弦信号加窄带高斯噪声,宇宙噪声等影响无线传输。
1.窄带高斯噪声:当高斯噪声通过以为中心角频率的窄带系统时,就可形成窄带高斯噪声。所谓窄带系统是指系统的频带宽度远远小于其中心频率的系统。窄带高斯噪声的特点是频谱局限在附近很窄的频率范围内,其包络和相位都在作缓慢随机变化。
2.宇宙噪声:天体辐射的电磁波对通信系统形成的噪声称为宇宙噪声。它在整个空间的分布是不均匀的,最强的来自银河系中部,其强度与季节和频率等因素有关。通常在工作频率低于300MHz时需要考虑它的影响。实践证明宇宙噪声服从高斯分布,在一般工作范围内它具有平坦的功率谱密度。
三、简述算术编码的原理,并举例说明(按照书中例5-9的条件,若输出序列为S=abdab,则对应的编码是什么?给出推导过程)
答:原理:
将需要编码的全部数据看成某一 L 长序列,所有可能出现的 L 长序列的概率映射到[0,1]区间上,把[0,1]区间分成许多小段,每段的长度等
iiii于某一序列的概率。再在段内取一个二进制小数用作码字,其长度可与该序列的概率匹配,达到高效率编码的目的。
4.简述LZ编码原理,并举例说明[按照书中例5-10的条件,若输入信源符号序列U=(abbabaabbababb)则对应的输出编码是什么?]
答:原理:
设信源符号集A={a1,a2,…,aK}共K个符号,设输入信源符号序列为u=(u1,u2,…,uL)编码是将此序列分成不同的段。分段的规范为:尽可能取最少个相连的信源符号,并保证各段都不相同。
开始时,先取一个符号作为第一段,然后继续分段。若出现与前面相同的符号时,就再取紧跟后面的一个符号一起组成一个段,使之与前面的段不同。这些分段构成字典。当字典达到一定大小后,再分段时就应查看有否与字典中的短语相同,若有重复就添加符号,以便与字典中短语不同,直至信源序列结束。
编码的码字由段号加一个符号组成。设u构成的字典中的短语共有M(u)个。若编码为二元码,段号所需码长n=「log M(u)「(注:代表上取整符号),每个符号需要的码长为「log K「。单符号的码字段号为0,非单字符的码字段号为除最后一个符号外字典中相同短语的段号。