数据增强

数据增强的作用

  1. 防止过拟合
  2. 增加数据集,使数据的鲁棒性和泛化性更强
  3. 提高识别精度

添加噪声

噪声产生原因如何产生
高斯噪音由于光照、高温引起的传感器噪声在原图上添加高斯分布的模板
椒盐噪音图像传感器电路噪声、编码器噪声确定信噪比,通过信噪比确定个数,随机产生位置生成黑点或白点
随机噪音随机产生,没有规律
滤波核说明作用
高斯滤波滤波核符合高斯分布,离中心点越近去除高斯噪声
均值滤波全平均值模糊
双边滤波一个与空间距离的高斯函数与一个与灰度距离的相关的高斯函数相乘
距离越近,权重越大;灰度差越小,权重越大
保存边缘信息
最大值滤波
最小值滤波
中值滤波选取中间值可以用来过了椒盐噪声,因为可以用中值替代黑点或者蓝点

几何变换

变换方式说明
平移 ( x ′ y ′ 1 ) = ( 1 0 Δ x 0 1 Δ y 0 0 1 ) ( x y 1 ) \begin{pmatrix} x^{'}\\y^{'}\\1\end{pmatrix} = \begin{pmatrix} 1 & 0 & \Delta x \\ 0 & 1 & \Delta y \\ 0 & 0 &1\end{pmatrix} \begin{pmatrix}x\\ y\\ 1\end{pmatrix} xy1=100010ΔxΔy1xy1
缩放 ( x ′ y ′ 1 ) = ( a 0 0 0 b 0 0 0 1 ) ( x y 1 ) \begin{pmatrix} x^{'}\\y^{'}\\1\end{pmatrix} = \begin{pmatrix} a & 0 & 0 \\ 0 & b & 0\\ 0 & 0 &1\end{pmatrix} \begin{pmatrix}x\\ y\\ 1\end{pmatrix} xy1=a000b0001xy1
旋转 ( x ′ y ′ 1 ) = ( c o s ( θ ) − s i n ( θ ) 0 s i n ( θ ) c o s ( θ ) 0 0 0 1 ) ( x y 1 ) \begin{pmatrix} x^{'}\\y^{'}\\1\end{pmatrix} = \begin{pmatrix} cos(\theta) & -sin(\theta) & 0 \\ sin(\theta) & cos(\theta) & 0\\ 0 & 0 &1\end{pmatrix} \begin{pmatrix}x\\ y\\ 1\end{pmatrix} xy1=cos(θ)sin(θ)0sin(θ)cos(θ)0001xy1
仿射 y = Ax + b \textbf{y}=\textbf{Ax}+\textbf{b} y=Ax+b
先进行线性变换再进行平移
( y 1 ) = ( A b 0 ⋯ 0 1 ) ( x 1 ) \begin{pmatrix} \textbf{y}\\1\end{pmatrix}=\begin{pmatrix} \textbf{A}&&\textbf{b}\\0&\cdots 0 & 1\end{pmatrix}\begin{pmatrix} \textbf{x}\\1\end{pmatrix} (y1)=(A00b1)(x1)
透射先是二维到三维,再从三维到二维的过程;
使用的是一个3x3矩阵,前两行和放射一样做线性变换和平移,后一行由于实现透视变换;
( X Y Z ) = ( m 11 m 12 m 13 m 21 m 22 m 23 m 31 m 32 m 33 ) ( x y 1 ) \begin{pmatrix} X\\Y\\Z\end{pmatrix} = \begin{pmatrix} m_{11} & m_{12} & m_{13} \\ m_{21} &m_{22} & m_{23} \\ m_{31} & m_{32} &m_{33} \end{pmatrix} \begin{pmatrix}x\\ y\\ 1\end{pmatrix} XYZ=m11m21m31m12m22m32m13m23m33xy1
x ′ = X Z y ′ = X Y \begin{aligned}x^{'} &= \frac{X}{Z}\\y^{'} &= \frac{X}{Y} \end{aligned} xy=ZX=YX

傅里叶变换可以作用边缘检测:因为如果图像像素比较相似(如:墙),则其低频部分较多,高频部分较少;如果图像像素相差较大,则高频数据较多,低频数据较多。

©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页