格拉姆矩阵 Gram Matrix 简单理解

以下转自 https://www.zhihu.com/question/49805962

为了简单说明Gram Matrix需要首先说明feature map:为了学习对象的feature。所以假设我们加到100种滤波器,每种滤波器的参数不一样,表示它提出输入图像的不同特征,如:边缘、条纹等。这样每种滤波器去卷积图像就得到对图像的不同特征,我们称之为Feature Map。所以100种卷积核就有100个Feature Map。这100个Feature Map就组成了一层神经元。一般来说浅层网络提取的是局部的细节纹理特征,深层网络提取的是更抽象的轮廓、大小等信息。这些特征总的结合起来表现出来的感觉就是图像的风格。Feature Map中,每个数字都来自于一个特定滤波器filter或者核kernel在特定位置的卷积,因此每个数字代表一个特征的强度。本质就是特征的提取量化。进一步得到这些特征向量后,就可以计算Gram Matrix。简言之Gram Matrix就是k个特征向量之间的内积组成的矩阵——可以被看作feature之间的偏心协方差矩阵(没有减去均值)。如果两个图像的特征向量的Gram矩阵的差异较小,在风格迁移中,就可以认定这两个图像是相近的。Gram计算的实际上是两两特征之间的相关性,哪两个特征是同时出现的,哪两个是此消彼长的等等,同时,Gram的对角线元素,还体现了每个特征在图像中出现的量。格拉姆矩阵 Gramian matrix设矩阵X:X=[X1 X2⋯ Xn]则Gramian matrix为:性质:G是positive semi-definite matrix正半定矩阵G的行列式非0时,X是线性无关的(充分必要)(可用来判定X是否线性无关,很重要)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值