格拉姆矩阵(Gram Matrix)

1、Gram矩阵的定义

n维欧式空间中任意k个向量之间两两的内积所组成的矩阵,称为这k个向量的格拉姆矩阵(Gram matrix)

根据定义可以看到,每个Gram矩阵背后都有一组向量,Gram矩阵就是由这一组向量两两内积得到的,先说一下向量内积是做什么的。

一个重要的应用就是可以根据内积判断向量a和向量b之间的夹角和方向关系,具体来说:

a·b>0    方向基本相同,夹角在0°到90°之间
a·b=0    正交,相互垂直  
a·b<0    方向基本相反,夹角在90°到180°之间 

简单来说就是内积可以反映出两个向量之间的某种关系或联系。Gram矩阵是两两向量的内积组成的,所以Gram矩阵可以反映出该组向量中各个向量之间的某种关系。

风格迁移中的Gram矩阵


深度学习中经典的风格迁移大体流程是:
1. 准备基准图像和风格图像
2. 使用深层网络分别提取基准图像(加白噪声)和风格图像的特征向量(或者说是特征图feature map)
3. 分别计算两个图像的特征向量的Gram矩阵,以两个图像的Gram矩阵的差异最小化为优化目标,不断调整基准图像,使风格不断接近目标风格图像

这里边比较关键的一个是在网络中提取的特征图,一般来说浅层网络提取的是局部的细节纹理特征,深层网络提取的是更抽象的轮廓、大小等信息。这些特征总的结合起来表现出来的感觉就是图像的风格,由这些特征向量计算出来的的Gram矩阵,就可以把图像特征之间隐藏的联系提取出来,也就是各个特征之间的相关性高低。如果两个图像的特征向量的Gram矩阵的差异较小,就可以认定这两个图像风格是相近的。

       格拉姆矩阵可以看做feature之间的偏心协方差矩阵(即没有减去均值的协方差矩阵),在feature map中,每个数字都来自于一个特定滤波器在特定位置的卷积,因此每个数字代表一个特征的强度,而Gram计算的实际上是两两特征之间的相关性,哪两个特征是同时出现的,哪两个是此消彼长的等等,同时,Gram的对角线元素,还体现了每个特征在图像中出现的量,因此,Gram有助于把握整个图像的大体风格。有了表示风格的Gram Matrix,要度量两个图像风格的差异,只需比较他们Gram Matrix的差异即可。

 

3、计算实例

      MATLAB计算程序及结果:

x1=[3,3]',  
x2=[4,3]',  
x3=[1,1]',  
G=[x1'*x1,x1'*x2,x1'*x3;  
    x2'*x1,x2'*x2,x2'*x3;  
    x3'*x1,x3'*x2,x3'*x3] 
         
G =

    18    21     6

    21    25     7

     6     7     2   

  • 5
    点赞
  • 23
    收藏
    觉得还不错? 一键收藏
  • 3
    评论
在Python中,格拉姆角场(Grammian)通常用于处理线性代数中的特征值问题,特别是矩阵的秩和奇异值分解(SVD)。格拉姆矩阵是由原矩阵与其转置相乘得到的,而角场则涉及到矩阵的秩变化情况。以下是一个简单的示例,展示了如何在Python中计算并可视化一个矩阵格拉姆角场: ```python import numpy as np from scipy.linalg import svd import matplotlib.pyplot as plt def gram_schmidt_field(matrix, num_points=100): # 计算格拉姆矩阵 gram = matrix @ matrix.T # SVD分解 u, s, vh = svd(gram) # 创建网格 x, y = np.meshgrid(np.linspace(-1, 1, num_points), np.linspace(-1, 1, num_points)) xy = np.stack([x.flatten(), y.flatten()]) # 将二维点映射到特征向量空间 projected_points = u @ xy # 检查每个点对应的秩 ranks = np.linalg.matrix_rank(projected_points, tol=1e-6, hermitian=True) # 归一化并绘制 scaled_ranks = (ranks - ranks.min()) / (ranks.max() - ranks.min()) plt.imshow(scaled_ranks.reshape(num_points, num_points), cmap='hot', extent=(-1, 1, -1, 1)) plt.xlabel('Column Index') plt.ylabel('Row Index') plt.title('Gauss-Newton Field for Matrix') plt.colorbar() plt.show() # 示例用法 matrix = np.random.rand(10, 10) # 假设这是一个10x10的随机矩阵 gram_schmidt_field(matrix) ``` 这个代码首先计算给定矩阵格拉姆矩阵,然后通过奇异值分解(SVD)找到它的左奇异向量。之后,它将二维坐标点映射到这些奇异向量的空间,并计算每个点对应的小秩区域,最终可视化为热力图。 相关问题: 1. SVD在格拉姆角场中起到了什么作用? 2. 如何理解矩阵秩在格拉姆角场中的意义? 3. 在实际问题中,使用格拉姆角场有什么应用场景?
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值