Transformer文本生成与tensorflow实现

1. 引言

    前面介绍了文本生成任务中的经典模型——Seq2Seq,以及一些常见的attention机制,虽然在文本生成任务中取得了相当出色的成绩,但是随着数据量的增大和语料长度的增大,RNN固有的序贯性严重阻碍了训练的速度,因此,本文将介绍另一个经典的模型——Transformer,该模型是由谷歌在2017年提出来的模型,模型完全摒弃了RNN和CNN的结构,只采用了attention的机制,在训练速度和生成效果都得到了不错的提升。

2. Transformer原理介绍

     在大多数的文本生成模型中,都采用encoder-decoder的结构,encoder将输入序列 ( x 1 , … , x n ) \left(x_{1}, \dots, x_{n}\right) (x1,,xn)转化为一个上下文向量 Z = ( z 1 , … , z n ) \mathbf{Z}=\left(z_{1}, \dots, z_{n}\right) Z=(z1,,zn),然后将上下文向量传递给decoder,decoder生成输出序列 ( y 1 , … , y m ) \left(y_{1}, \dots, y_{m}\right) (y1,,ym)。Transformer模型也是采用encoder-decoder的结构,只不过在encoder和decoder中不再采用RNN或者CNN,而是采用堆叠的self-attention和point-wise的形式。

2.1 Transformer模型结构

    Transformer模型的encoder采用的是堆叠6层的形式,每一层由两个子层组成,第一个子层是一层multi-head self-attention层,第二个子层是一层Position-wise Feed-Forward Networks,其中,每个子层都带有残差连接和layer normalization,即每个子层的最终输出为:
LayerNorm ( x + Sublayer ( x ) ) \text{LayerNorm}(x+\text{Sublayer}(x)) LayerNorm(x+Sublayer(x))其中, Sublayer ( x ) \text{Sublayer}(x) Sublayer(x)表示每个子层的输出。

Transformer模型的decoder也是采用堆叠6层的形式,每一层的结构与encoder类似,只是每一层多了一层multi-head attention,用来融合encoder的输出,并且每一层的第一层multi-head attention添加了mask机制,即在每一步解码时,会将后面的序列遮挡住,这样才可以防止模型作弊。具体的模型结构如下图所示:
在这里插入图片描述

2.2 Transformer模型的attention机制

    在上一节我们知道,Transformer模型的注意力机制主要是在multi-head attention这一子层,在介绍这一层的结构之前,先介绍一下scaled dot-product attention结构,对于attention机制,其实可以看做是从一个query向量映射到一个key向量,然后将keys向量对应的values向量作为输出的过程。在scaled dot-product attention结构中,有三个输入矩阵,分别是 Q 、 K 、 V Q、K、V QKV,分别对应query、keys和values,其中, Q 、 K Q、K QK的维度大小都是 d k d_k dk V V V的维度大小是 d v d_v dv。在该结构中,首先 Q 、 K Q、K QK会进行点积,然后将点积后的矩阵进行scale,即除以 d k \sqrt{d_{k}} dk ,然后经过一层softmax层得到权重矩阵,再与 V V V进行点积得到最终的输出,具体的计算公式如下:
( Q , K , V ) = softmax ⁡ ( Q K T d k ) V (Q, K, V)=\operatorname{softmax}\left(\frac{Q K^{T}}{\sqrt{d_{k}}}\right) V (Q,K,V)=softmax(dk QKT)V之所以要进行scale,是因为 Q 、 K Q、K QK进行点积后,往往会使得值比较大,此时传入softmax层后,可能会使得权重分布过于极端,会导致梯度非常小,因此,为了避免这个问题,对点积后的矩阵统一除以 d k \sqrt{d_{k}} dk 。具体如下图所示:
在这里插入图片描述
    multi-head attention子层的结构如上图所示,对于原始输入,作者会将输入 Q 、 K 、 V Q、K、V QKV先进行 h h h次线性变换,每次线性变换会将输入分别转化为三个维度更小的 Q 、 K 、 V Q、K、V QKV矩阵,每个矩阵的维度 d k = d v = d  model  / h d_{k}=d_{v}=d_{\text { model }} / h dk=dv=d model /h,其中 d  model  d_{\text { model }} d model 为原始输入的维度,然后将变换后的 Q 、 K 、 V Q、K、V QKV传入我们上面介绍的scaled dot-product attention,最后再将 h h h个输出进行拼接,然后经过一层线性变换后重新将维度转化为 d  model  d_{\text { model }} d model 。具体的计算公式如下:
MultiHead ( Q , K , V ) =  Concat ( h e a d 1 , … ,  head  h ) W O \text{MultiHead}(Q, K, V)=\text { Concat} (head _{1}, \ldots, \text { head }_{h} ) W^{O} MultiHead(Q,K,V)= Concat(head1,, head h)WO其中, head i = \text{head}_{\mathrm{i}}= headi= Attention ( Q W i Q , K W i K , V W i V ) \left(Q W_{i}^{Q}, K W_{i}^{K}, V W_{i}^{V}\right) (QWiQ,KWiK,VWiV) W i Q ∈ R d model × d k W_{i}^{Q} \in \mathbb{R}^{d_{\text{model}} \times d_{k}} WiQRdmodel×dk W i K ∈ R d  model  × d k W_{i}^{K} \in \mathbb{R}^{d_{\text { model }} \times d_{k}} WiKRd model ×dk W i V ∈ R d model ⁡ × d v W_{i}^{V} \in \mathbb{R}^{d_{\operatorname{model}} \times d_{v}} WiVRdmodel×dv W O ∈ R h d v × d m o d e l W^{O} \in \mathbb{R}^{h d_{v} \times d_{\mathrm{model}}} WORhdv×dmodel

    对于encoder中的每一层multi-head attention,每一个时间步都会融合各个时间步的信息,随着层数的加深,其信息量会更加丰富。而对于decoder中的multi-head attention,有两个地方需要注意,首先是每一层中的第一层multi-head attention,为了避免在每次解码时偷看到后面的信息,需要添加一个mask层,也就是在 Q Q Q K K K计算完之后,将后面的序列的值置为 − ∞ -\infty ,这样经过softmax之后就可以转变为0。另一个需要注意的地方是第二层multi-head attention,该层会将encoder的输出作为 K 、 V K、V KV的输入,这样在每次decoder时,就可以注意到encoder中的局部信息。

2.3 Position-wise Feed-Forward Networks

    Transformer模型的每一层中除了multi-head attention层之外,还有一层position-wise feed-forward子层,该子层含有两层全连接层,第一层全连接层带有Relu激活函数,其输出维度为 d f f = 2048 d_{f f}=2048 dff=2048,第二层全连接层的输出维度为 d m o d e l d_{model} dmodel,具体的计算公式如下:
F F N ( x ) = max ⁡ ( 0 , x W 1 + b 1 ) W 2 + b 2 \mathrm{FFN}(x)=\max \left(0, x W_{1}+b_{1}\right) W_{2}+b_{2} FFN(x)=max(0,xW1+b1)W2+b2

2.4 Positional Encoding

    由于Transformer没有采用RNN或CNN,因此,单独用self-attention是没法引入序列的时序信息的,因此,Transformer对位置也进行了embedding,其计算公式如下:
P E ( p o s , 2 i ) = sin ⁡ ( pos ⁡ / 1000 0 2 i / d model ⁡ ) P E ( p o s , 2 i + 1 ) = cos ⁡ ( pos ⁡ / 1000 0 2 i / d model ⁡ ) PE_{(p o s, 2 i)}=\sin \left(\operatorname{pos} / 10000^{2 i / d_{\operatorname{model}}}\right) \\ PE_{(p o s, 2 i+1)}=\cos \left(\operatorname{pos} / 10000^{2 i / d_{\operatorname{model}}}\right) PE(pos,2i)=sin(pos/100002i/dmodel)PE(pos,2i+1)=cos(pos/100002i/dmodel)其中 p o s pos pos表示序列中第几个位置, i i i表示embedding的维度,每个位置的embedding维度跟词汇的embedding维度一致,都为 d m o d e l d_{model} dmodel,然后在encoder或decoder的输入时,将词汇的embedding和位置的embedding进行相加,这样就能引入序列的时序信息,作者之所以采用正弦曲线作为位置信息的编码方式,是因为 P E p o s + k PE_{p o s+k} PEpos+k可以用 P E p o s PE_{p o s} PEpos经过线性变换得到,当句子的长度超过训练时的最大长度时,对于那些超出的位置信息,就可以用短一点的位置信息经过线性变换得到。

3. Transformer的tensorflow实现

    采用tensorflow对Transformer进行复现,代码如下:

import config
import numpy as np
import tensorflow as tf
from config import transformer_config

class Transformer(object):
    def __init__(self,
                 embedding_size=transformer_config.embedding_size,
                 num_layers=transformer_config.num_layers,
                 keep_prob=transformer_config.keep_prob,
                 learning_rate=transformer_config.learning_rate,
                 learning_decay_steps=transformer_config.learning_decay_steps,
                 learning_decay_rate=transformer_config.learning_decay_rate,
                 clip_gradient=transformer_config.clip_gradient,
                 is_embedding_scale=transformer_config.is_embedding_scale,
                 multihead_num=transformer_config.multihead_num,
                 label_smoothing=transformer_config.label_smoothing,
                 max_gradient_norm=transformer_config.clip_gradient,
                 encoder_vocabs=config.encoder_vocabs + 2,
                 decoder_vocabs=config.decoder_vocabs + 2,
                 max_encoder_len=config.max_encoder_len,
                 max_decoder_len=config.max_decoder_len,
                 share_embedding=config.share_embedding,
                 pad_index=None
                 ):
        self.embedding_size = embedding_size
        self.num_layers = num_layers
        self.keep_prob = keep_prob
        self.learning_rate = learning_rate
        self.learning_decay_steps = learning_decay_steps
        self.learning_decay_rate = learning_decay_rate
        self.clip_gradient = clip_gradient
        self.encoder_vocabs = encoder_vocabs
        self.decoder_vocabs = decoder_vocabs
        self.max_encoder_len = max_encoder_len
        self.max_decoder_len = max_decoder_len
        self.share_embedding = share_embedding
        self.is_embedding_scale = is_embedding_scale
        self.multihead_num = multihead_num
        self.label_smoothing = label_smoothing
        self.max_gradient_norm = max_gradient_norm
        self.pad_index = pad_index
        self.build_model()

    def build_model(self):
        # 初始化变量
        self.encoder_inputs = tf.placeholder(tf.int32, [None, None], name='encoder_inputs')
        self.encoder_inputs_length = tf.placeholder(tf.int32, [None], name='encoder_inputs_length')
        self.batch_size = tf.placeholder(tf.int32, [], name='batch_size')
        self.keep_prob = tf.placeholder(tf.float32, name='keep_prob')
        self.decoder_inputs = tf.placeholder(tf.int32, [None, None], name='decoder_inputs')
        self.decoder_targets = tf.placeholder(tf.int32, [None, None], name='decoder_targets')
        self.decoder_inputs_length = tf.shape(self.decoder_inputs)[1]
        self.decoder_targets_length = tf.placeholder(tf.int32, [None], name='decoder_targets_length')
        self.targets_mask = tf.sequence_mask(self.decoder_targets_length, self.max_decoder_len,
                                            dtype=tf.float32, name='masks')
        self.itf_weight = tf.placeholder(tf.float32, [None, None], name='itf_weight')

        # embedding层
        with tf.name_scope("embedding"):
            # encoder_embedding = tf.get_variable(
            #     'encoder_embedding', [self.encoder_vocabs, self.embedding_size],
            #     initializer=tf.random_normal_initializer(0., self.embedding_size ** -0.5)
            # )
            zero = tf.zeros([1, self.embedding_size], dtype=tf.float32)  # for padding
            # embedding_table = tf.Variable(tf.random_uniform([self.voca_size-1, self.embedding_size], -1, 1))
            encoder_embedding = tf.get_variable(
                # https://github.com/tensorflow/models/blob/master/official/transformer/model/embedding_layer.py
                'embedding_table',
                [self.encoder_vocabs - 1, self.embedding_size],
                initializer=tf.random_normal_initializer(0., self.embedding_size ** -0.5))
            front, end = tf.split(encoder_embedding, [self.pad_index, self.encoder_vocabs - 1 - self.pad_index])
            encoder_embedding = tf.concat((front, zero, end), axis=0)  # [self.voca_size, self.embedding_size]
            encoder_position_encoding = self.positional_encoding(self.max_encoder_len)
            if not self.share_embedding:
                decoder_embedding = tf.get_variable(
                    'decoder_embedding', [self.decoder_vocabs, self.embedding_size],
                    initializer=tf.random_normal_initializer(0., self.embedding_size ** -0.5)
                )
                decoder_position_encoding= self.positional_encoding(self.max_decoder_len)

        # encoder
        with tf.name_scope("encoder"):
            encoder_inputs_embedding, encoder_inputs_mask = self.add_embedding(
                encoder_embedding, encoder_position_encoding, self.encoder_inputs,tf.shape(self.encoder_inputs)[1]
            )
            self.encoder_outputs = self.encoder(encoder_inputs_embedding, encoder_inputs_mask)

        # decoder
        with tf.name_scope('decoder'):
            if self.share_embedding:
                decoder_inputs_embedding, decoder_inputs_mask = self.add_embedding(
                    encoder_embedding, encoder_position_encoding, self.decoder_inputs,self.decoder_inputs_length
                )
            else:
                decoder_inputs_embedding, decoder_inputs_mask = self.add_embedding(
                    decoder_embedding, decoder_position_encoding, self.decoder_inputs,self.decoder_inputs_length
                )
            self.decoder_outputs, self.predict_ids= self.decoder(decoder_inputs_embedding, self.encoder_outputs,
                                                                 decoder_inputs_mask,encoder_inputs_mask)

        # loss
        with tf.name_scope('loss'):
            # label smoothing
            self.targets_one_hot = tf.one_hot(
                self.decoder_targets,
                depth=self.decoder_vocabs,
                on_value=(1.0 - self.label_smoothing) + (self.label_smoothing / self.decoder_vocabs),
                off_value=(self.label_smoothing / self.decoder_vocabs),
                dtype=tf.float32
            )

            loss = tf.nn.softmax_cross_entropy_with_logits(
                labels=self.targets_one_hot,
                logits=self.decoder_outputs
            )
            if config.use_itf_loss:
                loss *= self.itf_weight
            else:
                loss *= self.targets_mask
            self.loss = tf.reduce_sum(loss) / tf.reduce_sum(self.targets_mask)

        # 优化函数,对学习率采用指数递减的形式
        self.global_step = tf.train.get_or_create_global_step()
        learning_rate = tf.train.exponential_decay(self.learning_rate, self.global_step,
                                                   self.learning_decay_steps, self.learning_decay_rate,
                                                   staircase=True)

        optimizer = tf.train.AdamOptimizer(learning_rate)
        trainable_params = tf.trainable_variables()
        gradients = tf.gradients(self.loss, trainable_params)
        clip_gradients, _ = tf.clip_by_global_norm(gradients, self.max_gradient_norm)
        self.train_op = optimizer.apply_gradients(zip(clip_gradients, trainable_params))

        # summary
        tf.summary.scalar('loss', self.loss)
        self.merged = tf.summary.merge_all()

    def encoder(self, encoder_inputs_embedding, encoder_inputs_mask):
        # multi-head attention mask
        encoder_self_attention_mask = tf.tile(
            tf.matmul(encoder_inputs_mask, tf.transpose(encoder_inputs_mask, [0, 2, 1])),
            [self.multihead_num, 1, 1]
        )
        encoder_outputs = encoder_inputs_embedding
        for i in range(self.num_layers):
            # multi-head selt-attention sub_layer
            multi_head_outputs = self.multi_head_attention_layer(
                query=encoder_outputs,
                key_value=encoder_outputs,
                score_mask=encoder_self_attention_mask,
                output_mask=encoder_inputs_mask,
                activation=None,
                name='encoder_multi_' + str(i)
            )

            # point-wise feed forward sub_layer
            encoder_outputs = self.feed_forward_layer(
                multi_head_outputs,
                output_mask=encoder_inputs_mask,
                activation=tf.nn.relu,
                name='encoder_dense_' + str(i)
            )
        return encoder_outputs

    def decoder(self, decoder_inputs_embedding, encoder_outputs, decoder_inputs_mask,encoder_inputs_mask):
        # mask
        decoder_encoder_attention_mask = tf.tile(
            tf.transpose(encoder_inputs_mask,[0, 2, 1]),
            [self.multihead_num, 1, 1]
        )

        decoder_self_attention_mask = tf.tile(tf.expand_dims(tf.sequence_mask(
            tf.range(start=1, limit=self.decoder_inputs_length + 1),
            maxlen=self.decoder_inputs_length,
            dtype=tf.float32),axis=0
        ),[self.multihead_num*tf.shape(decoder_inputs_embedding)[0],1,1])

        decoder_outputs = decoder_inputs_embedding
        for i in range(self.num_layers):
            # masked multi-head selt-attention sub_layer
            masked_multi_head_outputs = self.multi_head_attention_layer(
                query=decoder_outputs,
                key_value=decoder_outputs,
                score_mask=decoder_self_attention_mask,
                output_mask=decoder_inputs_mask,
                activation=None,
                name='decoder_first_multi_' + str(i)
            )

            # multi-head selt-attention sub_layer
            multi_head_outputs = self.multi_head_attention_layer(
                query=masked_multi_head_outputs,
                key_value=encoder_outputs,
                score_mask=decoder_encoder_attention_mask,
                output_mask=decoder_inputs_mask,
                activation=None,
                name='decoder_second_multi_' + str(i)
            )

            # point-wise feed forward sub_layer
            decoder_outputs = self.feed_forward_layer(
                multi_head_outputs,
                output_mask=decoder_inputs_mask,
                activation=tf.nn.relu,
                name='decoder_dense_' + str(i)
            )

        # output_layer
        decoder_outputs = tf.layers.dense(decoder_outputs,units=self.decoder_vocabs,activation=None,name='outputs')
        predict_ids = tf.argmax(decoder_outputs,axis=-1,output_type=tf.int32)
        return decoder_outputs, predict_ids

    def multi_head_attention_layer(self, query, key_value, score_mask=None, output_mask=None,
                                   activation=None,name=None):
        """
        multi-head self-attention sub_layer
        :param query:
        :param key_value:
        :param score_mask:
        :param output_mask:
        :param activation:
        :param name:
        :return:
        """
        with tf.variable_scope(name, reuse=tf.AUTO_REUSE):
            # 计算Q、K、V
            V = tf.layers.dense(key_value,units=self.embedding_size,activation=activation,use_bias=False,name='V')
            K = tf.layers.dense(key_value,units=self.embedding_size,activation=activation,use_bias=False,name='K')
            Q = tf.layers.dense(query,units=self.embedding_size,activation=activation,use_bias=False,name='Q')

            # 将Q、K、V分离为multi-heads的形式
            V = tf.concat(tf.split(V, self.multihead_num, axis=-1),axis=0)
            K = tf.concat(tf.split(K, self.multihead_num, axis=-1),axis=0)
            Q = tf.concat(tf.split(Q, self.multihead_num, axis=-1),axis=0)

            # 计算Q、K的点积,并进行scale
            score = tf.matmul(Q, tf.transpose(K, [0, 2, 1])) / tf.sqrt(self.embedding_size / self.multihead_num)

            # mask
            if score_mask is not None:
                score *= score_mask
                score += ((score_mask - 1) * 1e+9)

            # softmax
            softmax = tf.nn.softmax(score,dim=2)

            # dropout
            softmax = tf.nn.dropout(softmax, keep_prob=self.keep_prob)

            # attention
            attention = tf.matmul(softmax,V)

            # 将multi-head的输出进行拼接
            concat = tf.concat(tf.split(attention, self.multihead_num, axis=0),axis=-1)

            # Linear
            Multihead = tf.layers.dense(concat,units=self.embedding_size,activation=activation,
                                        use_bias=False,name='linear')

            # output mask
            if output_mask is not None:
                Multihead *= output_mask

            # 残差连接前的dropout
            Multihead = tf.nn.dropout(Multihead, keep_prob=self.keep_prob)

            # 残差连接
            Multihead += query

            # Layer Norm
            Multihead = tf.contrib.layers.layer_norm(Multihead, begin_norm_axis=2)
            return Multihead

    def feed_forward_layer(self, inputs, output_mask=None, activation=None, name=None):
        """
        point-wise feed_forward sub_layer
        :param inputs:
        :param output_mask:
        :param activation:
        :param name:
        :return:
        """
        with tf.variable_scope(name, reuse=tf.AUTO_REUSE):
            # dense layer
            inner_layer = tf.layers.dense(inputs,units=4 * self.embedding_size,activation=activation)
            dense = tf.layers.dense(inner_layer,units=self.embedding_size,activation=None)

            # output mask
            if output_mask is not None:
                dense *= output_mask

            # dropout
            dense = tf.nn.dropout(dense, keep_prob=self.keep_prob)

            # 残差连接
            dense += inputs

            # Layer Norm
            dense = tf.contrib.layers.layer_norm(dense, begin_norm_axis=2)
        return dense


    def add_embedding(self, embedding,position_encoding,inputs_data,data_length):
        # 将词汇embedding与位置embedding进行相加
        inputs_embedded = tf.nn.embedding_lookup(embedding,inputs_data)
        if self.is_embedding_scale is True:
            inputs_embedded *= self.embedding_size ** 0.5
        inputs_embedded += position_encoding[:data_length, :]

        # embedding_mask
        embedding_mask = tf.expand_dims(
            tf.cast(tf.not_equal(inputs_data, self.pad_index), dtype=tf.float32),
            axis=-1
        )
        inputs_embedded *= embedding_mask

        # embedding dropout
        inputs_embedded = tf.nn.dropout(inputs_embedded, keep_prob=self.keep_prob)
        return inputs_embedded,embedding_mask

    def positional_encoding(self,sequence_length):
        """
        positional encoding
        :return:
        """
        position_embedding = np.zeros([sequence_length, self.embedding_size])
        for pos in range(sequence_length):
            for i in range(self.embedding_size // 2):
                position_embedding[pos, 2 * i] = np.sin(pos / np.power(10000, 2 * i / self.embedding_size))
                position_embedding[pos, 2 * i + 1] = np.cos(pos / np.power(10000, 2 * i / self.embedding_size))
        position_embedding = tf.convert_to_tensor(position_embedding, dtype=tf.float32)
        return position_embedding

    def train(self, sess, encoder_inputs, encoder_inputs_length, decoder_inputs,
              decoder_targets, decoder_targets_length, itf_weight,
              keep_prob=transformer_config.keep_prob):
        feed_dict = {self.encoder_inputs: encoder_inputs,
                     self.encoder_inputs_length: encoder_inputs_length,
                     self.decoder_inputs: decoder_inputs,
                     self.decoder_targets: decoder_targets,
                     self.decoder_targets_length: decoder_targets_length,
                     self.keep_prob: keep_prob,
                     self.batch_size: len(encoder_inputs),
                     self.itf_weight: itf_weight}
        _, train_loss = sess.run([self.train_op, self.loss], feed_dict=feed_dict)
        return train_loss

    def eval(self, sess, encoder_inputs_val, encoder_inputs_length_val, decoder_inputs_val,
             decoder_targets_val, decoder_targets_length_val, itf_weight_val):
        feed_dict = {self.encoder_inputs: encoder_inputs_val,
                     self.encoder_inputs_length: encoder_inputs_length_val,
                     self.decoder_inputs: decoder_inputs_val,
                     self.decoder_targets: decoder_targets_val,
                     self.decoder_targets_length: decoder_targets_length_val,
                     self.keep_prob: 1.0,
                     self.batch_size: len(encoder_inputs_val),
                     self.itf_weight: itf_weight_val}
        val_loss = sess.run(self.loss, feed_dict=feed_dict)
        summary = sess.run(self.merged, feed_dict=feed_dict)
        return val_loss, summary

4. 总结

    最后总结一下:

  • Transformer由于采用纯attention的形式,因此,在训练时可以充分利用GPU的并行计算能力,极大提高了模型的训练速度。
  • 由于Transformer在每一层都采用attention,因此,模型的解码能力要相对Seq2Seq更强。
  • 5
    点赞
  • 67
    收藏
    觉得还不错? 一键收藏
  • 10
    评论
Transformer发轫于NLP(自然语言处理),并跨界应用到CV(计算机视觉)领域。目前已成为深度学习的新范式,影响力和应用前景巨大。 本课程对Transformer的原理和TensorFlow 2代码进行精讲,来帮助大家掌握其详细原理和具体实现。 原理精讲部分包括:注意力机制和自注意力机制、Transformer的架构概述、Encoder的多头注意力(Multi-Head Attention)、Encoder的位置编码(Positional Encoding)、残差链接(Residual Connection)、层规范化(Layer Normalization)、FFN(Feed Forward Network)、Transformer的训练及性能、Transformer的机器翻译工作流程。  代码精讲部分使用Jupyter Notebook对TransformerTensorFlow 2实现代码进行逐行解读,包括:安装TensorFlowTransformer的数据集加载与预处理代码解读、Transformer的位置编码与多头注意力代码解读、TransformerTransformer类代码解读、Transformer的优化器与损失函数代码解读、Transformer的训练代码解读、Transformer的推理与权重保存代码解读。相关课程: 《Transformer原理与代码精讲(PyTorch)》https://edu.csdn.net/course/detail/36697《Transformer原理与代码精讲(TensorFlow)》https://edu.csdn.net/course/detail/36699《ViT(Vision Transformer)原理与代码精讲》https://edu.csdn.net/course/detail/36719《DETR原理与代码精讲》https://edu.csdn.net/course/detail/36768《Swin Transformer实战目标检测:训练自己的数据集》https://edu.csdn.net/course/detail/36585《Swin Transformer实战实例分割:训练自己的数据集》https://edu.csdn.net/course/detail/36586《Swin Transformer原理与代码精讲》 https://download.csdn.net/course/detail/37045
Transformer 是一种用于自然语言处理任务的神经网络模型,被广泛应用于机器翻译、文本生成等领域。TensorFlow是一个流行的深度学习框架,提供了丰富的工具和函数来实现Transformer模型。 在TensorFlow中,我们可以使用tf.keras来构建Transformer模型。首先,需要引入所需的库和模块,包括tensorflow、numpy等。接下来,可以定义Transformer模型的各个组件,如嵌入层、多头注意力机制、前馈神经网络等。 然后,可以定义Encoder和Decoder模块。Encoder模块用于将输入序列转换为一系列隐藏表示,而Decoder模块则利用Encoder的输出和自身的输入生成目标序列。在Transformer模型中,Encoder和Decoder由多个相同的层组成,每个层都包含多头注意力机制和前馈神经网络。 最后,将Encoder和Decoder组装成一个完整的Transformer模型,并进行编译和训练。可以使用优化器如Adam,损失函数如交叉熵损失函数,并定义训练过程的一些参数如学习率、批处理大小等。 在训练过程中,可以使用TensorFlow的自动求导功能计算梯度,并使用优化器根据梯度更新模型参数。可以通过调整训练数据、超参数等来优化模型性能。 最后,可以使用训练好的Transformer模型进行推理和预测。可以通过模型的输入序列生成输出序列,以完成翻译、生成等任务。 总之,通过TensorFlow实现Transformer模型可以帮助我们进行自然语言处理任务。通过定义各个组件、编译和训练模型,我们可以构建一个高效、准确的Transformer模型,并在实际应用中取得优秀的效果。
评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值