Arduino uno + mpu6050 陀螺仪 运用卡尔曼滤波姿态解算实验

本文介绍了MPU6050六轴陀螺仪在无人机、平衡车等设备中的应用,详细阐述了如何使用卡尔曼滤波算法解决姿态判断问题,并提供了具体实现步骤和实例代码。通过调整参数和优化算法,可以提高设备的稳定性和精确性。

 

MPU6050六轴陀螺仪

作用于四轴无人机,平衡车,机器人等等的电子实作当中,用于姿态判断,掌握了可以发挥自己的想象完成更多更有趣的作品。

 

本例程输出XYZ的角度,正负90度。

运用卡尔曼滤波算法解算姿态,感觉算是比较稳定,但好像有点偏移。大家好好学习参考,再改进吧。

 

输出效果

首先看看本例程XYZ轴的输出效果图:

(时间曲线的体现是:静止姿态→摆动→恢复原静止姿态→拍动桌子→静止姿态)

 

Bom表

 

Arduino Uno               *1

mpu6050 陀螺仪模块 *1

跳线                            若干

 

MPU6050 引脚说明

VCC             3.3-5V(内部有稳压芯片)

GND             地线
SCL              MPU6050作为从机时IIC时钟线

SDA              MPU6050作为从机时IIC数据线

XCL               MPU6050作为主机时IIC时钟线

XDA              MPU6050作为主机时IIC数据线
AD0              地址管脚,该管脚决定了IIC地址的最低一位

INT                中断引脚

 

接线

Arduino uno+MPU6050接线方式如下



  

 

程序实现

 

首先要更新I2C库

在GITHUB找到的I2C库

(程序来源: https://github.com/jrowberg/i2cdevlib

 

打开,把Arduino文件夹里的I2Cdev,MPU6050文件夹复制到Arduino IDE的库文件夹里

(默认的路径是这个 C:\Program Files (x86)\Arduino\libraries)

 

 

在GITHUB找到的卡尔曼滤波程序(程序来源: https://github.com/wjjun/MPU6050_Kalman

 

 

把程序上传到板子上,打开串口监视器,就可以看到一堆堆的数据了

(往后再说说怎么整理处理这些数据)

 

程序和库文件打包下载:https://u16460183.ctfile.com/fs/16460183-295242093

 

压缩包文件夹说明:
I2Cdev  -- i2c库(都是需要放置在Arduino的库目录里面)
MPU6050 -- mpu6050陀螺仪库
LS_MPU6050  -- 主程序文件

 

#include "Wire.h"
#include "I2Cdev.h"
#include "MPU6050.h"

MPU6050 accelgyro;

unsigned long now, lastTime = 0;
float dt;                                   //微分时间

int16_t ax, ay, az, gx, gy, gz;             //加速度计陀螺仪原始数据
float aax=0, aay=0,aaz=0, agx=0, agy=0, agz=0;    //角度变量
long axo = 0, ayo = 0, azo = 0;             //加速度计偏移量
long gxo = 0, gyo = 0, gzo = 0;             //陀螺仪偏移量

float pi = 3.1415926;
float AcceRatio = 16384.0;                  //加速度计比例系数
float GyroRatio = 131.0;                    //陀螺仪比例系数

uint8_t n_sample = 8;                       //加速度计滤波算法采样个数
float aaxs[8] = {0}, aays[8] = {0}, aazs[8] = {0};         //x,y轴采样队列
long aax_sum, aay_sum,aaz_sum;                      //x,y轴采样和

float a_x[10]={0}, a_y[10]={0},a_z[10]={0} ,g_x[10]={0} ,g_y[10]={0},g_z[10]={0}; //加速度计协方差计算队列
float Px=1, Rx, Kx, Sx, Vx, Qx;             //x轴卡尔曼变量
float Py=1, Ry, Ky, Sy, Vy, Qy;             //y轴卡尔曼变量
float Pz=1, Rz, Kz, Sz, Vz, Qz;             //z轴卡尔曼变量

void setup()
{
    Wire.begin();
    Serial.begin(115200);

    accelgyro.initialize();                 //初始化

    unsigned short times = 200;             //采样次数
    for(int i=0;i<times;i++)
    {
        accelgyro.getMotion6(&ax, &ay, &az, &gx, &gy, &gz); //读取六轴原始数值
        axo += ax; ayo += ay; azo += az;      //采样和
        gxo += gx; gyo += gy; gzo += gz;
    
    }
    
    axo /= times; ayo /= times; azo /= times; //计算加速度计偏移
    gxo /= times; gyo /= times; gzo /= times; //计算陀螺仪偏移
}

void loop()
{
    unsigned long now = millis();             //当前时间(ms)
    dt = (now - lastTime) / 1000.0;           //微分时间(s)
    lastTime = now;                           //上一次采样时间(ms)

    accelgyro.getMotion6(&ax, &ay, &az, &gx, &gy, &gz); //读取六轴原始数值

    float accx = ax / AcceRatio;              //x轴加速度
    float accy = ay / AcceRatio;              //y轴加速度
    float accz = az / AcceRatio;              //z轴加速度

    aax = atan(accy / accz) * (-180) / pi;    //y轴对于z轴的夹角
    aay = atan(accx / accz) * 180 / pi;       //x轴对于z轴的夹角
    aaz = atan(accz / accy) * 180 / pi;       //z轴对于y轴的夹角

    aax_sum = 0;                              // 对于加速度计原始数据的滑动加权滤波算法
    aay_sum = 0;
    aaz_sum = 0;
  
    for(int i=1;i<n_sample;i++)
    {
        aaxs[i-1] = aaxs[i];
        aax_sum += aaxs[i] * i;
        aays[i-1] = aays[i];
        aay_sum += aays[i] * i;
        aazs[i-1] = aazs[i];
        aaz_sum += aazs[i] * i;
    
    }
    
    aaxs[n_sample-1] = aax;
    aax_sum += aax * n_sample;
    aax = (aax_sum / (11*n_sample/2.0)) * 9 / 7.0; //角度调幅至0-90°
    aays[n_sample-1] = aay;                        //此处应用实验法取得合适的系数
    aay_sum += aay * n_sample;                     //本例系数为9/7
    aay = (aay_sum / (11*n_sample/2.0)) * 9 / 7.0;
    aazs[n_sample-1] = aaz; 
    aaz_sum += aaz * n_sample;
    aaz = (aaz_sum / (11*n_sample/2.0)) * 9 / 7.0;

    float gyrox = - (gx-gxo) / GyroRatio * dt; //x轴角速度
    float gyroy = - (gy-gyo) / GyroRatio * dt; //y轴角速度
    float gyroz = - (gz-gzo) / GyroRatio * dt; //z轴角速度
    agx += gyrox;                             //x轴角速度积分
    agy += gyroy;                             //x轴角速度积分
    agz += gyroz;
    
    /* kalman start */
    Sx = 0; Rx = 0;
    Sy = 0; Ry = 0;
    Sz = 0; Rz = 0;
    
    for(int i=1;i<10;i++)
    {                 //测量值平均值运算
        a_x[i-1] = a_x[i];                      //即加速度平均值
        Sx += a_x[i];
        a_y[i-1] = a_y[i];
        Sy += a_y[i];
        a_z[i-1] = a_z[i];
        Sz += a_z[i];
    
    }
    
    a_x[9] = aax;
    Sx += aax;
    Sx /= 10;                                 //x轴加速度平均值
    a_y[9] = aay;
    Sy += aay;
    Sy /= 10;                                 //y轴加速度平均值
    a_z[9] = aaz;
    Sz += aaz;
    Sz /= 10;

    for(int i=0;i<10;i++)
    {
        Rx += sq(a_x[i] - Sx);
        Ry += sq(a_y[i] - Sy);
        Rz += sq(a_z[i] - Sz);
    
    }
    
    Rx = Rx / 9;                              //得到方差
    Ry = Ry / 9;                        
    Rz = Rz / 9;
  
    Px = Px + 0.0025;                         // 0.0025在下面有说明...
    Kx = Px / (Px + Rx);                      //计算卡尔曼增益
    agx = agx + Kx * (aax - agx);             //陀螺仪角度与加速度计速度叠加
    Px = (1 - Kx) * Px;                       //更新p值

    Py = Py + 0.0025;
    Ky = Py / (Py + Ry);
    agy = agy + Ky * (aay - agy); 
    Py = (1 - Ky) * Py;
  
    Pz = Pz + 0.0025;
    Kz = Pz / (Pz + Rz);
    agz = agz + Kz * (aaz - agz); 
    Pz = (1 - Kz) * Pz;

    /* kalman end */

    Serial.print(agx);Serial.print(",");
    Serial.print(agy);Serial.print(",");
    Serial.print(agz);Serial.println();
    
}

 

 

 

 

 

 

 

### MPU6050 传感器校准方法 #### 初始化过程 为了确保 MPU6050 的正常工作,在使用前需要对其进行初始化设置。这包括配置设备地址、设定测量范围以及使能相应的功能模块。通过 I2C 接口发送特定命令来完成这些操作[^1]。 ```cpp // 定义 MPU6050 设备地址 #define MPU6050_ADDRESS_AD0_LOW (0xD0 >> 1) // AD0 接地时的地址 #define MPU6050_ADDRESS_AD0_HIGH (0xD2 >> 1) // AD0 连接 VCC 或悬空时的地址 void setup() { Wire.begin(); // 设置加速度计满量程范围为 ±8g writeRegister(MPU6050_ADDRESS, MPU6050_ACCEL_CONFIG, 0x10); } ``` #### 陀螺仪零偏补偿 由于制造工艺上的差异,每个 MPU6050 都可能存在固有的偏差。可以通过采集一段时间内的静态数据并计平均值得到该偏差值,从而实现对原始读数的有效修正。 ```cpp float gyroBias[3]; // 存储三个轴向的陀螺仪零偏 for(int i=0; i<NUM_READINGS; ++i){ readGyroData(gyroRaw); // 获取未处理的数据 for(uint8_t j=0; j<3; ++j){ gyroSum[j] += gyroRaw[j]; } } for(uint8_t k=0; k<3; ++k){ gyroBias[k] = gyroSum[k]/(float)NUM_READINGS; } ``` #### 加速度计灵敏度调整 对于加速度计而言,除了消除初始安装位置带来的影响外,还需要考虑重力矢量的影响。通常采用水平放置的方式收集多组样本点,并据此求出相对于理想状态下的旋转矩阵来进行后续的姿态估计。 ```cpp int accOffsets[3]; while (!calibratedAccel) { readAccelData(accRaw); // 记录最大最小值用于确定偏移量 if (accRaw[X_AXIS] > maxVal[X_AXIS]) maxVal[X_AXIS] = accRaw[X_AXIS]; if (accRaw[Y_AXIS] > maxVal[Y_AXIS]) maxVal[Y_AXIS] = accRaw[Y_AXIS]; if (accRaw[Z_AXIS] > maxVal[Z_AXIS]) maxVal[Z_AXIS] = accRaw[Z_AXIS]; if (accRaw[X_AXIS] < minVal[X_AXIS]) minVal[X_AXIS] = accRaw[X_AXIS]; if (accRaw[Y_AXIS] < minVal[Y_AXIS]) minVal[Y_AXIS] = accRaw[Y_AXIS]; if (accRaw[Z_AXIS] < minVal[Z_AXIS]) minVal[Z_AXIS] = accRaw[Z_AXIS]; delay(DELAY_TIME_MS); calibratedAccel = checkCalibrationComplete(); } for (uint8_t axisIndex = X_AXIS; axisIndex <= Z_AXIS; ++axisIndex) { accOffsets[axisIndex] = ((maxVal[axisIndex]+minVal[axisIndex])/2)-ZERO_G_OFFSET; } ``` #### 校准后的输出 经过上述步骤之后,可以得到较为精确的角度变化率和线性加速度信息。在校正过程中获得的各项参数应当保存下来以便于下次启动时直接加载应用,减少重复劳动的同时提高系统的响应效率。
评论 83
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值