道路病害的检测与评估

本文详细介绍了如何利用yolov8框架进行道路病害的检测与评估,包括环境配置、数据集准备、模型训练和预测程序的实现。通过配置conda环境,安装CUDA、cudnn、pytorch,创建虚拟环境,并导入yolov8项目。接着,调整数据集格式以适应yolo训练,并编写训练配置文件进行模型训练。最后,展示了训练后的预测流程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

基于yolov8道路病害的检测与评估

1 安装yolov8并使用

1.下载后:

在这里插入图片描述

2.选择为所有用户安装

在这里插入图片描述

3.选择一个合适的目录

在这里插入图片描述

4.第一个是自动添加环境变量,我们用默认的第二个后边手动添加

在这里插入图片描述

5.等待安装

在这里插入图片描述

1.1 安装anconda并配置环境变量

安装完成anconda之后,主要用的两个为Anaconda Prompt 和Anaconda Navigator
Anaconda Prompt 就是我们的cmd,打开后如下:在这里插入图片描述
在创建并配置对应的虚拟环境之前需要安装cuda,cuda是显卡厂商 NVIDIA 推出的运算平台。

1.2 配置yolo环境

下载CUDA
查看你的显卡对应的CUDA版本,我的是12.3;使用链接传送门选择你适合的版本
下载cudnn
直接传送门,然后安装的部分推荐直接看传送门
下载pytorch(gpu)
需要下载使用gpu的pytorch,cuda是12.3版本可以兼容12.1的,传送门

# 如果之前安装过cpu版本的pytorch使用一下步骤:
# 查看当前虚拟环境中已有的软件包
conda list 
# 从虚拟环境中删除包
conda remove package_name
# 或者
pip uninstall package_name
# 附上下载命令,pip与conda最好是使用一个,不要串用,不然可能造成pytorch与torchversion版本不一致
# 如果造成了不一致,以torch.__version为主;
# 推荐,使用conda虚拟环境时应该尽量使用conda安装相应的包
conda install pytorch torchvision torchaudio pytorch-cuda=12.1 -c pytorch -c nvidia
# 或者(不推荐,conda与pip尽量不要一起使用)
pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu121

验证torch-gpu是否可用:

import torch
import torchvision

# ☆如果出现0.16.2+cu121,类似这种,就没问题,代表你pytorch可以使用gpu加速。

# print(torch.cuda.device_count())
print(torch.__version__)
print(torchvision.__version__)

print(torch.cuda.device_count())  #查看可用的CUDA数量

# 检查torch是否有CUDA支持,即是否能用GPU
print(torch.cuda.is_available())

# 如果CUDA可用,它还会打印出当前默认的CUDA设备(通常是第一个GPU)
if torch.cuda.is_available():
    print(torch.cuda.get_device_name(0))
print(torch.version.cuda)

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print(device)

如果是类似下边结果,说明没有问题:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

黒猫.

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值