vscode 配置opencv+opencv_contribute

本文主要介绍opencv安装后vscode如何配置并使用opencv。前期的准备工作可以参考这篇文章内容很详细https://www.cnblogs.com/uestc-mm/p/12758110.html
对应的工具大家可以自行去官网下载或者可以直接下载我打包好的文件里面包含了所有需要用到的工具和配置文件工具包下载
在安装opencv后,打开vscode新建项目 编写测试代码`

#include <stdio.h>
#include <iostream>
#include <stdlib.h>
#include <opencv2/opencv.hpp>

using namespace std;

int main(void)
{
    char s[] = "Hi,Cpp.";
    int n = strlen(s);
    printf("%s:%d\n",s,n);

    cout << "Hello Opencv4.2" << endl;
    cout << cv::COLOR_RGB2BGRA << cv::COLOR_RGB2GRAY << endl;
    cv::Mat a = cv::imread("D:/Desktop/69854d9dbf064bd0b34b3e95bba08e61.PNG");
    cv::imshow("hello",a);
    cv::waitKey(0);
    return 0;
}
	然后分别配置如下几个文件
	launch.json
{
    "version": "0.2.0",
    "configurations": [
        {
            "name": "(gdb) Launch", // 配置名称,将会在启动配置的下拉菜单中显示
            "type": "cppdbg", // 配置类型,这里只能为cppdbg
            "request": "launch", // 请求配置类型,可以为launch(启动)或attach(附加)
            "program": "${workspaceFolder}/${fileBasenameNoExtension}.exe", // 将要进行调试的程序的路径
            "args": [], // 程序调试时传递给程序的命令行参数,一般设为空即可
            "stopAtEntry": false, // 设为true时程序将暂停在程序入口处,一般设置为false
            "cwd": "${workspaceFolder}", // 调试程序时的工作目录,一般为${workspaceRoot}即代码所在目录 workspaceRoot已被弃用,现改为workspaceFolder
            "environment": [],
            "externalConsole": true, // 调试时是否显示控制台窗口,一般设置为true显示控制台
            "MIMode": "gdb",
            "miDebuggerPath": "E:/MinGW-64-posix/mingw64/bin/gdb.exe", // miDebugger的路径,注意这里要与MinGw的路径对应
            "preLaunchTask": "g++", // 调试会话开始前执行的任务,一般为编译程序,c++为g++, c为gcc
            "setupCommands": [
                {
                    "description": "Enable pretty-printing for gdb",
                    "text": "-enable-pretty-printing",
                    "ignoreFailures": true
                }
            ]
        }
    ]
}
 tasks.json 
{
    "version": "2.0.0",
    "command": "g++",
    "args": [
        "-g",
        "${file}",
        "-o",
        "${fileDirname}\\${fileBasenameNoExtension}.exe",
        "-I","E:/opencv/opencv/new_build/install/include",//全部替换成自己的路径
        "-I","E:/opencv/opencv/new_build/install/include/opencv2",
        "-L","E:/opencv/opencv/new_build/install/x64/mingw/bin",
        "-L","E:/opencv/opencv/new_build/install/x64/mingw/lib",
        "-l","libopencv_calib3d420",//替换成自己opencv版本号 如opencv_4.2.0  后面就写420
        "-l","libopencv_core420",
        "-l","libopencv_dnn420",
        "-l","libopencv_features2d420",
        "-l","libopencv_flann420",
        "-l","libopencv_highgui420",
        "-l","libopencv_imgcodecs420",
        "-l","libopencv_imgproc420",
        "-l","libopencv_ml420",
        "-l","libopencv_objdetect420",
        "-l","libopencv_photo420",
        "-l","libopencv_stitching420",
        "-l","libopencv_video420",
        "-l","libopencv_videoio420",
        "-Wall",
        "-static-libgcc",
        "-std=c++17"
       
    ],
    "options": {
        "cwd": "E:/MinGW-64-posix/mingw64/bin"
    },
    "problemMatcher": {
        "owner": "cpp",
        "fileLocation": [
            "relative",
            "${workspaceFolder}"
        ],
        "pattern": {
            "regexp": "^(.*):(\\d+):(\\d+):\\s+(warning|error):\\s+(.*)$",
            "file": 1,
            "line": 2,
            "column": 3,
            "severity": 4,
            "message": 5
        }
    },
    "group": {
        "kind": "build",
        "isDefault": true
    }
}
c_cpp_properties.json
{
    "configurations": [
        {
            "name": "Win32",
            "includePath": [
                "${workspaceFolder}/**",
                "E:/MinGW-64-posix/mingw64/include/*",
                // "E:/MinGW-64-posix/mingw64/lib/gcc/x86_64-w64-mingw32/8.1.0/include/c++/*",
                // "E:/MinGW-64-posix/mingw64/lib/gcc/x86_64-w64-mingw32/8.1.0/include/c++/x86_64-w64-mingw32/*",
                // "E:/MinGW-64-posix/mingw64/lib/gcc/x86_64-w64-mingw32/8.1.0/include/c++/backward/*",
                // "E:/MinGW-64-posix/mingw64/lib/gcc/x86_64-w64-mingw32/8.1.0/include/*",
                // "E:/MinGW-64-posix/mingw64/lib/gcc/x86_64-w64-mingw32/8.1.0/include-fixed",
                "E:/opencv/opencv/new_build/install/include",
                "E:/opencv/opencv",
                "E:/opencv/opencv/new_build/install/include/opencv2",
                "${workspaceFolder}/MinGW/include/boost/compute/interop"
            ],
            "defines": [],
            "compilerPath": "E:/MinGW-64-posix/mingw64/bin/gcc.exe",
            "cStandard": "c11",
            "cppStandard": "c++17",
            "intelliSenseMode": "clang-x64",
            "browse": {
                "path": [
                    "${workspaceFolder}",
                    "E:/MinGW-64-posix/mingw64/include/**",
                    "E:/MinGW-64-posix/mingw64/lib/gcc/x86_64-w64-mingw32/8.1.0/include",
                    "E:/MinGW-64-posix/mingw64/lib/gcc/x86_64-w64-mingw32/8.1.0/include/c++",
                    "E:/opencv/opencv/new_build/install/include",
                    "E:\\opencv\\opencv\\new_build\\install\\x64\\mingw\\lib"
                ],
                "limitSymbolsToIncludedHeaders": true,
                "databaseFilename": ""
            }
        }
    ],
    "version": 4
}
settings.json
{

     "C_Cpp.errorSquiggles": "Enabled",
    
   "files.associations": {
    
    "random": "cpp"

    },
    "code-runner.executorMap": {
        
  		"c": "cd $dir && gcc '$fileName' -o '$fileNameWithoutExt.exe' -Wall -g -O2 -static-libgcc -std=c11 -fexec-charset=UTF-8 && &'$dir$fileNameWithoutExt'",

        "cpp": "cd $dir && g++ $fileName -o $fileNameWithoutExt -I E:\\opencv\\opencv\\new_build\\install\\include -I E:\\opencv\\opencv\\new_build\\install\\opencv2 -L E:\\opencv\\opencv\\new_build\\install\\x64\\MinGW\\lib -lopencv_core420 -lopencv_imgproc420 -lopencv_video420 -lopencv_ml420 -lopencv_highgui420 -lopencv_objdetect420 -lopencv_flann420 -lopencv_imgcodecs420 -lopencv_photo420 -lopencv_videoio420 -llibopencv_dnn420 && $dir$fileNameWithoutExt "


  }
}
    

这些文件如果没有就直接创建 然后复制粘贴 注意更改成自己的路径 以及自己的opencv版本号

### 回答1: 1. 安装 OpenCV:可以通过下载源代码编译安装或者使用第三方库管理工具(如 vcpkg)。 2. 配置 VSCode:在 VSCode 中安装 C/C++ 插件,然后在工程的 c_cpp_properties.json 文件中配置包含路径和库路径。 3. 编写代码:在代码中包含 OpenCV 头文件,并使用相应的函数。 4. 编译运行:使用 VSCode 中的编译运行工具编译和运行代码。 注意:具体配置方法可能因系统、环境、版本等因素有所不同。 ### 回答2: 首先,需要安装OpenCV库。在Windows系统上,可以从官方网站下载OpenCV的Windows版本并安装。在Linux系统上,则可以通过包管理器安装OpenCV。安装完成后,需要将OpenCV的库文件复制到相应的路径下,以便编译器能够找到并使用这些库文件。 接下来,需要安装VSCode和C/C++插件。在安装完成之后,需要在VSCode的设置中添加一些路径,以便编译器能够找到OpenCV的头文件和库文件。这些路径的设置可以在VSCode的“settings.json”文件中完成。 ``` "includePath": [ "${workspaceFolder}/**", "C:/opencv/build/include" // 请根据实际情况修改 ], "compilerPath": "C:/MinGW/bin/gcc.exe", // 请根据实际情况修改 "tasks": [ { "type": "cppbuild", "label": "C/C++: build active file", "command": "gcc", "options": [ "-g", "-std=c11", "-O0", "-o", "${fileDirname}/${fileBasenameNoExtension}.exe", "${file}", "-I", "C:/opencv/build/include", // 请根据实际情况修改 "-L", "C:/opencv/build/x64/vc15/lib", // 请根据实际情况修改 "-lopencv_world341" ], "problemMatcher": [ "$gcc" ], "group": { "kind": "build", "isDefault": true } } ] ``` 其中,includePath需要指定OpenCV的头文件所在路径,compilerPath需要指定编译器的路径(如gcc.exe所在路径)。在tasks中,需要指定编译器的参数和链接的库文件,包括指定OpenCV的库文件所在路径和要链接的库文件名。 最后,可以在VSCode中创建一个C文件,并编写OpenCV的测试程序。编写完成后,使用ctrl+shift+b进行编译和链接,并会在当前目录下生成一个可执行文件。打开终端,进入当前目录,运行该可执行文件即可看到OpenCV的效果。 总的来说,使用VSCode配置OpenCV的C语言开发环境需要注意:安装OpenCV库、设置编译器和VSCode插件、指定OpenCV的头文件和库文件所在路径以及编写测试程序。 ### 回答3: Visual Studio Code(VSCode)是一款功能强大的文本编辑器,能够支持多种语言和开发环境,其中包括OpenCV C库的开发。VSCode配置对于OpenCV C的开发至关重要,可以使开发者能够快速轻松地完成OpenCV C的开发工作。 VSCode配置OpenCV C库主要需要以下步骤: 1. 安装VSCode和C/C++扩展:首先需要安装VSCode,在“扩展”市场搜索并安装C/C++扩展,以在VSCode中编写和调试C代码。 2. 下载OpenCV C库:下载OpenCV C库源代码并解压缩,此处以OpenCV-4.5.1为例。 3. 配置环境变量:将OpenCV C库的bin目录加入系统环境变量中,以便在任何目录下都能够执行OpenCV C库的命令。 4. 创建工作空间:在VSCode中创建一个新的工作空间,用于存放OpenCV C的开发文件和项目。 5. 配置tasks.json和launch.json文件:这两个文件用于配置调试和构建OpenCV C的任务。打开VSCode的“执行任务”界面,点击“计划新构建任务”按钮,选择“C/Cpp:g++ build active file”选项,将任务保存为tasks.json。打开VSCode的“调试”界面,点击“添加配置”按钮,选择“C++(GDB/LLDB)”选项,将启动任务和程序路径配置好,并保存为launch.json。 6. 编写和调试代码:在工作空间中创建一个新的C文件,引入OpenCV库,编写和调试代码即可。 总体来说,VSCode配置OpenCV C库需要一定的技术水平和基础知识,需要掌握C/C++编程、调试和编译等方面的知识。但只要按照上述步骤进行配置和调试,使用VSCode进行OpenCV C库的开发是一件简单明了的事情。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

S1om

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值