3D【1】人脸重建:Face Alignment Across Large Poses: A 3D Solution中侧脸数据生成实验

本文介绍了使用3D Face Alignment技术进行侧脸数据生成的实验,涉及3DDFA和HPEN两种方法。3DDFA虽然简单但重建质量可能不高,而HPEN利用形状约束能较好地重建3D人脸。特征点检测是关键,dlib适用于正脸,而另一论文的demo适用于侧脸。侧脸到大角度侧脸的合成效果优于正脸到侧脸的转换,后者易出现特征点映射问题和轮廓模糊。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

论文提出了一个由3d合成侧脸数据的方法,由于最近项目需要,便尝试了该方法。在此记录一些东西。

作者给出的数据合成demo中使用的是basel face model(BFM)的人脸3d重建参数,里面用到了pose参数,shape参数。为了合成出自己的数据,我们需要先获取这两个参数。获取这两个参数的方法挺多的,我这边尝试的几个方法分别为:运行作者给定3d重建demo(3DDFA),或者用High-Fidelity Pose and Expression Normalization for Face Recognition in the Wild中给出的demo(HPEN)生成。接下来说一下这两个方法,这两个方法都要求68个人脸特征点。

1、运行3DDFA。直接按照demo里面的说明,替换自己的数据,然后运行。这里面的问题在于,生成的3d模型分辨率是100*100,但在数据合成demo中我们希望合成原始图片的分辨率。因此在获得roi_img(假设400*400)后可以将其保存下来(还要保存68个特征点,要减去bbox左上点的x),然后将3DDFA生成的pose参数中的x,y,z,f参数都乘上400/100=4(下面的代码)。这个方法的一个问题是,由于3DDFA没有形状约束,其重建出来的3d face可能质量没那么高,这会影响后面的侧脸合成。

Pose_Para(4) = Pose_Para(4)*scale
评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值