论文的思路比价简单,本身论文写的也简单,这里也就简单记录一下。
论文的思路是使用高层的特征图来加强低层特征图的语义信息,以增加小物体检测精度。具体如下图:

至于为什么使用conv5和conv4,论文也做了比较。这是因为感受野越大(越高层的特征图),经过上采样后会包含更多的背景噪声,这会影响小物体的检测。如下图所示:
图中越往右边表示网络层越深,可以看出越深的特征图上采样后包含的背景信息越多。
论文还讨论了拼接时使用,concat还是sum操作:

实验结果
不同融合方案以及不同的拼接方案:

最终的结果,在小物体(bottle为例)上比原始的SSD是有所提升,相对于DSSD会差一点点,但速度应该会比DSSD快些:


论文提出通过融合高层特征图增强低层语义信息,改善小物体检测效果。对比了不同层次特征图的上采样效果,以及concat和sum操作对结果的影响。实验结果显示在小物体检测上优于原始SSD,速度可能快于DSSD。
最低0.47元/天 解锁文章
1776

被折叠的 条评论
为什么被折叠?



