2.2. 数据预处理

2.2.1. 读取数据集

1.写一个数据集

import os

# 获取当前目录
current_directory = os.getcwd()

# 创建目录和写入文件的代码
#创建一个名为"data"的目录
os.makedirs(os.path.join(current_directory, 'data'), exist_ok=True)
#将数据文件路径存储在 data_file 变量中,以便稍后在代码中使用
data_file = os.path.join(current_directory, 'data', 'house_tiny.csv')
#将一些数据写入到CSV文件中
with open(data_file, 'w') as f:
    f.write('NumRooms,Alley,Price\n')  # 列名
    f.write('NA,Pave,127500\n')  # 每行表示一个数据样本
    f.write('2,NA,106000\n')
    f.write('4,NA,178100\n')
    f.write('NA,NA,140000\n')

2.加载原始数据集

import pandas as pd

data = pd.read_csv(data_file)
print(data)

在这里插入图片描述

2.2.2. 处理缺失值

inputs, outputs = data.iloc[:, 0:2], data.iloc[:, 2]
inputs = inputs.fillna(inputs.mean(numeric_only=True))
print(inputs)

通过位置索引iloc,我们将data分成inputs和outputs, 其中前者为data的前两列,而后者为data的最后一列。 对于inputs中缺少的数值,我们用同一列的均值替换“NaN”项。
在这里插入图片描述

inputs = pd.get_dummies(inputs, dummy_na=True)
print(inputs)

对于inputs中的类别值或离散值,我们将“NaN”视为一个类别。 由于“巷子类型”(“Alley”)列只接受两种类型的类别值“Pave”和“NaN”, pandas可以自动将此列转换为两列“Alley_Pave”和“Alley_nan”。 巷子类型为“Pave”的行会将“Alley_Pave”的值设置为1,“Alley_nan”的值设置为0。 缺少巷子类型的行会将“Alley_Pave”和“Alley_nan”分别设置为0和1。
在这里插入图片描述

2.2.3. 转换为张量格式

现在inputs和outputs中的所有条目都是数值类型,它们可以转换为张量格式。 当数据采用张量格式后,可以通过在 2.1节中引入的那些张量函数来进一步操作。

import torch

X = torch.tensor(inputs.to_numpy(dtype=float))
y = torch.tensor(outputs.to_numpy(dtype=float))
X, y

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值