2.2.1. 读取数据集
1.写一个数据集
import os
# 获取当前目录
current_directory = os.getcwd()
# 创建目录和写入文件的代码
#创建一个名为"data"的目录
os.makedirs(os.path.join(current_directory, 'data'), exist_ok=True)
#将数据文件路径存储在 data_file 变量中,以便稍后在代码中使用
data_file = os.path.join(current_directory, 'data', 'house_tiny.csv')
#将一些数据写入到CSV文件中
with open(data_file, 'w') as f:
f.write('NumRooms,Alley,Price\n') # 列名
f.write('NA,Pave,127500\n') # 每行表示一个数据样本
f.write('2,NA,106000\n')
f.write('4,NA,178100\n')
f.write('NA,NA,140000\n')
2.加载原始数据集
import pandas as pd
data = pd.read_csv(data_file)
print(data)
2.2.2. 处理缺失值
inputs, outputs = data.iloc[:, 0:2], data.iloc[:, 2]
inputs = inputs.fillna(inputs.mean(numeric_only=True))
print(inputs)
通过位置索引iloc,我们将data分成inputs和outputs, 其中前者为data的前两列,而后者为data的最后一列。 对于inputs中缺少的数值,我们用同一列的均值替换“NaN”项。
inputs = pd.get_dummies(inputs, dummy_na=True)
print(inputs)
对于inputs
中的类别值或离散值,我们将“NaN
”视为一个类别。 由于“巷子类型”(“Alley
”)列只接受两种类型的类别值“Pave
”和“NaN
”, pandas可以自动将此列转换为两列“Alley_Pave
”和“Alley_nan
”。 巷子类型为“Pave
”的行会将“Alley_Pave
”的值设置为1,“Alley_nan
”的值设置为0。 缺少巷子类型的行会将“Alley_Pave
”和“Alley_nan
”分别设置为0和1。
2.2.3. 转换为张量格式
现在inputs和outputs中的所有条目都是数值类型,它们可以转换为张量格式。 当数据采用张量格式后,可以通过在 2.1节中引入的那些张量函数来进一步操作。
import torch
X = torch.tensor(inputs.to_numpy(dtype=float))
y = torch.tensor(outputs.to_numpy(dtype=float))
X, y