正规战和游击战

一般模型

x(t)表示甲方兵力,y(t)表示乙方兵力

假设

  • 每方战斗减员率取决于双方的兵力和战斗力,甲乙双方的战斗减员率分别用f(x,y)和g(x,y)表示;
  • 每方非战斗减员率与本方兵力成正比;
  • 甲乙双方的增援率为u(t),v(t)。

模型

在这里插入图片描述f和g是不同的战争类型。

正规战争

  • 甲方战斗减员率只取决于乙方的兵力和战斗力
    f ( x , y ) = − a y f(x,y)=-ay f(x,y)=ay
    a表示乙方每个士兵的杀伤率
    a=rypy,其中ry表示射击率,py表示命中率。
    在这里插入图片描述
  • 忽略非战斗减员
  • 假设没有增援

可以得到简单的常微分方程组:
在这里插入图片描述求解该微分方程得到:

在这里插入图片描述在这里插入图片描述因此正规战争是平方率模型

游击战争模型

在一个地区内,士兵越多,被杀伤的就越多,因此甲方战斗减员率不仅与乙方的兵力有关,而且随着甲方兵力的增加而增加。这样可以简单假设 f = c x y f=cxy f=cxy;
乙方战斗有效系数 c c c可表示为:
c = r y p y = r y s r y s y c=r_yp_y=r_y\frac{s_{ry}}{s_y} c=rypy=rysysry
其中 r y r_y ry仍为射击率,而命中率 p y p_y py等于乙方一次射击的有效面积 s r y s_{ry} sry与甲方活动的面积 s x s_x sx之比。
在这里插入图片描述在这里插入图片描述线性模型
在这里插入图片描述

混合战争模型

甲方为游击队,乙方为正规部队。
在这里插入图片描述分析
在这里插入图片描述

硫磺岛战役

美方和日方都是正规军,日方没有应援。

A ( t ) 和 J ( t ) 表 示 美 军 和 日 军 第 t 天 的 天 数 , 在 正 规 战 争 模 型 ( 2 ) 式 中 忽 略 非 战 斗 减 员 , 且 v = 0 , 再 加 上 初 始 条 件 , 有 A(t)和J(t)表示美军和日军第t天的天数,在正规战争模型(2)式中忽略非战斗减员,且v=0,再加上初始条件,有 A(t)J(t)t(2)v=0
在这里插入图片描述用求和代替积分,可得:
在这里插入图片描述估计b的方法:在(22)式中,t=36,A(t)是实际统计的数据,通过统计36天的A(t)值得到 ∑ t = 1 36 A ( t ) = 2037000 \sum_{t=1}^{36}A(t)=2037000 t=136A(t)=2037000,于是由 J ( 36 ) = 0 , J ( 0 ) = 21500 J(36)=0,J(0)=21500 J(36)=0,J(0)=21500可以估计出b的值:
b = 21500 203700 = 0.0106 b=\frac{21500}{203700}=0.0106 b=20370021500=0.0106再把这个值代入(22)式,即可算出 J ( t ) , t = 1 , 2 , … , 36 J(t),t=1,2,…,36 J(t),t=1,2,36
在这里插入图片描述在这里插入图片描述

### 无人化作战中YOLO目标检测算法的应用 #### 应用场景分析 在无人化作战环境中,实时性准确性对于决策至关重要。YOLO(You Only Look Once)作为一种高效的目标检测算法,在军事无人机侦察、战场态势感知等方面展现出巨大潜力[^1]。 #### 实现方式探讨 针对无人化作战需求定制化的YOLO模型训练过程主要包括以下几个方面: - **数据集构建**:收集并标注大量具有代表性的军事实战场景图像样本,确保覆盖不同天气条件下的各类地形地貌以及潜在威胁对象。 - **优化网络结构**:考虑到资源受限平台上的部署效率问题,对原有YOLO架构进行适当裁剪或改进,比如引入轻量化卷积模块来降低计算复杂度的同时保持较高的识别精度。 - **增强鲁棒性处理**:通过集成多源传感器信息融合机制提升系统的环境适应能力;利用对抗生成网络(GANs)扩充稀有类别实例数量从而缓解类别不平衡现象带来的负面影响。 ```python import torch from yolov5 import YOLOv5 model_path = "path/to/custom/yolov5_model" device = 'cuda' if torch.cuda.is_available() else 'cpu' yolo_model = YOLOv5(model_path, device) def detect_targets(image_tensor): results = yolo_model.predict(image_tensor) return results.pandas().xyxy[0] image_input = ... # 输入待检测图片张量 detections = detect_targets(image_input) print(detections[['xmin', 'ymin', 'xmax', 'ymax', 'confidence', 'class']]) ``` 此代码片段展示了如何加载预训练好的YOLO v5模型并对输入图像执行预测操作,输出检测到的对象位置及其置信度得分所属分类标签。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值