一般模型
x(t)表示甲方兵力,y(t)表示乙方兵力
假设
- 每方战斗减员率取决于双方的兵力和战斗力,甲乙双方的战斗减员率分别用f(x,y)和g(x,y)表示;
- 每方非战斗减员率与本方兵力成正比;
- 甲乙双方的增援率为u(t),v(t)。
模型
f和g是不同的战争类型。
正规战争
- 甲方战斗减员率只取决于乙方的兵力和战斗力
f ( x , y ) = − a y f(x,y)=-ay f(x,y)=−ay
a表示乙方每个士兵的杀伤率
a=rypy,其中ry表示射击率,py表示命中率。
- 忽略非战斗减员
- 假设没有增援
可以得到简单的常微分方程组:
求解该微分方程得到:
因此正规战争是平方率模型
游击战争模型
在一个地区内,士兵越多,被杀伤的就越多,因此甲方战斗减员率不仅与乙方的兵力有关,而且随着甲方兵力的增加而增加。这样可以简单假设
f
=
c
x
y
f=cxy
f=cxy;
乙方战斗有效系数
c
c
c可表示为:
c
=
r
y
p
y
=
r
y
s
r
y
s
y
c=r_yp_y=r_y\frac{s_{ry}}{s_y}
c=rypy=rysysry
其中
r
y
r_y
ry仍为射击率,而命中率
p
y
p_y
py等于乙方一次射击的有效面积
s
r
y
s_{ry}
sry与甲方活动的面积
s
x
s_x
sx之比。
线性模型
混合战争模型
甲方为游击队,乙方为正规部队。
分析
硫磺岛战役
美方和日方都是正规军,日方没有应援。
A
(
t
)
和
J
(
t
)
表
示
美
军
和
日
军
第
t
天
的
天
数
,
在
正
规
战
争
模
型
(
2
)
式
中
忽
略
非
战
斗
减
员
,
且
v
=
0
,
再
加
上
初
始
条
件
,
有
A(t)和J(t)表示美军和日军第t天的天数,在正规战争模型(2)式中忽略非战斗减员,且v=0,再加上初始条件,有
A(t)和J(t)表示美军和日军第t天的天数,在正规战争模型(2)式中忽略非战斗减员,且v=0,再加上初始条件,有
用求和代替积分,可得:
估计b的方法:在(22)式中,t=36,A(t)是实际统计的数据,通过统计36天的A(t)值得到
∑
t
=
1
36
A
(
t
)
=
2037000
\sum_{t=1}^{36}A(t)=2037000
∑t=136A(t)=2037000,于是由
J
(
36
)
=
0
,
J
(
0
)
=
21500
J(36)=0,J(0)=21500
J(36)=0,J(0)=21500可以估计出b的值:
b
=
21500
203700
=
0.0106
b=\frac{21500}{203700}=0.0106
b=20370021500=0.0106再把这个值代入(22)式,即可算出
J
(
t
)
,
t
=
1
,
2
,
…
,
36
J(t),t=1,2,…,36
J(t),t=1,2,…,36