向量代数与空间解析几何

此为笔者复习考研数学笔记,如有错误,望各位读者不惜笔墨不啬赐教,鄙人感激不尽!图片部分为汤家凤老师教学视频中的截图,倾删


一、向量代数

1. 先置概念

向量(矢量):有方向和大小的量称为向量。一个向量由方向和大小唯一确定

  1. 向量的加减法满足平行四边形定则
  2. 向量数乘只满足长度倍数放缩的关系,不改变方向
  3. 向量平行的充要条件是: a ⃗ ≠ 0 ⃗ \vec a \neq \vec 0 a =0 ,那么向量 b ⃗ \vec b b 平行于 a ⃗ \vec a a 的充要条件是:存在唯一的实数 λ \lambda λ b ⃗ = λ a ⃗ \vec b=\lambda \vec a b =λa
  4. 向量的模:二范数的绝对值
  5. 两向量之间的夹角定义在 [ 0 , π ] [0,\pi] [0,π] 范围内
  6. 向量的方向角和方向余弦:
    1. cos ⁡ α = x ∣ r ⃗ ∣ \cos \alpha=\frac x{|\vec r|} cosα=r x
    2. cos ⁡ β = y ∣ r ⃗ ∣ \cos \beta=\frac y{|\vec r|} cosβ=r y
    3. cos ⁡ γ = z ∣ r ⃗ ∣ \cos \gamma =\frac z{|\vec r|} cosγ=r z

2. 数量积

  1. a ⃗ ⋅ b ⃗ = ∣ a ∣ ⋅ ∣ b ∣ cos ⁡ θ \vec a \cdot \vec b=|a|\cdot|b|\cos \theta a b =abcosθ ,其中 θ \theta θ 为a,b向量的夹角
  2. ∣ b ∣ cos ⁡ θ |b|\cos \theta bcosθ 几何意义是 b 在 a 方向上的投影
  3. 数量积满足:
    1. 交换律: a ⃗ ⋅ b ⃗ = b ⃗ ⋅ a ⃗ \vec a \cdot \vec b=\vec b \cdot \vec a a b =b a
    2. 分配律: a ⃗ ⋅ ( b ⃗ + c ⃗ ) = a ⃗ ⋅ b ⃗ + a ⃗ ⋅ c ⃗ \vec a \cdot (\vec b + \vec c)=\vec a \cdot \vec b+\vec a \cdot \vec c a (b +c )=a b +a c
    3. 结合律: a ⃗ ⋅ b ⃗ + a ⃗ ⋅ c ⃗ = a ⃗ ⋅ ( b ⃗ + c ⃗ ) \vec a \cdot \vec b+\vec a \cdot \vec c=\vec a \cdot (\vec b+\vec c) a b +a c =a (b +c )
  4. 数量积可以用来判断两向量是否垂直
  5. a ⃗ ⋅ a ⃗ = ∣ a ⃗ ∣ 2 \vec a \cdot \vec a=|\vec a|^2 a a =a 2

3. 向量积

  1. 物理意义:力产生的力矩
  2. a ⃗ × b ⃗ = c ⃗ \vec a \times \vec b=\vec c a ×b =c ,其中 c ⃗ \vec c c 满足大小为 ∣ a ⃗ ∣ ⋅ ∣ b ⃗ ∣ sin ⁡ θ |\vec a| \cdot |\vec b| \sin \theta a b sinθ ,方向满足右手定则:四指由a指向b,大拇指所指向的方向
  3. 向量积满足:
    1. 分配律: ( a ⃗ + b ⃗ ) × c ⃗ = a ⃗ × c ⃗ + b ⃗ × c ⃗ (\vec a+\vec b)\times\vec c=\vec a \times \vec c+\vec b\times\vec c (a +b )×c =a ×c +b ×c
    2. “负交换律”: a ⃗ × b ⃗ = − b ⃗ × a ⃗ \vec a\times\vec b=-\vec b\times \vec a a ×b =b ×a
  4. 判断两向量是否平行
  5. a ⃗ × a ⃗ = 0 ⃗ \vec a\times\vec a=\vec 0 a ×a =0
  6. 计算公式: a ⃗ × b ⃗ = [ i ⃗ j ⃗ k ⃗ a x a y a z b x b y b z ] \vec{a} \times \vec{b}=\left[\begin{array}{ccc} \vec{i} & \vec{j} & \vec{k} \\ a_{x} & a_{y} & a_{z} \\ b_{x} & b_{y} & b_{z} \end{array}\right] a ×b = i axbxj aybyk azbz
  7. 几何意义: 以 a 和 b为两邻边构成的四边形的面积

4. 混合积

记三个向量 a ⃗ = ( a 1 , a 2 , a 3 ) , b ⃗ = ( b 1 , b 2 , b 3 ) , c ⃗ = ( c 1 , c 2 , c 3 ) \vec a=(a_1,a_2,a_3),\vec b=(b_1,b_2,b_3),\vec c=(c_1,c_2,c_3) a =(a1,a2,a3)b =(b1,b2,b3)c =(c1,c2,c3)

那么 ( a ⃗ × b ⃗ ) ⋅ c ⃗ (\vec a\times\vec b)\cdot \vec c (a ×b )c 为向量的混合积,记作 [ a b c ] [abc] [abc] ,并有 ( a ⃗ × b ⃗ ) ⋅ c ⃗ = ∣ a 1 a 2 a 3 b 1 b 2 b 3 c 1 c 2 c 3 ∣ (\mathbf{\vec a} \times \mathbf{\vec b}) \cdot \mathbf{\vec c}=\left|\begin{array}{lll} a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3} \end{array}\right| (a ×b )c = a1b1c1a2b2c2a3b3c3

  1. 混合积满足轮换对称性
  2. 混合积为0则三向量共面
  3. 以a, b, c 为棱的四面体,体积为混合积的 1 6 \frac16 61
  4. 以a, b, c 为棱的平行六面体,体积为混合积

5. 向量应用

5.1 平面及其方程
  1. 点法式

    M 0 ( x 0 , y 0 , z 0 ) ∈ π M_0(x_0,y_0,z_0)\in \pi M0(x0,y0,z0)π n ⃗ = { A , B , C } ⊥ π \vec n=\{A,B,C\} \perp \pi n ={A,B,C}π ,那么平面 π \pi π 可以表示为 π : A ( x − x 0 ) + B ( y − y 0 ) + C ( z − z 0 ) \pi:A(x-x_0)+B(y-y_0)+C(z-z_0) π:A(xx0)+B(yy0)+C(zz0)

  2. 截距式

    设平面 π \pi π 交三坐标轴的点各自为 A ( a , 0 , 0 ) 、 B ( 0 , b , 0 ) 、 C ( 0 , 0 , c ) A(a,0,0)、B(0,b,0)、C(0,0,c) A(a,0,0)B(0,b,0)C(0,0,c) ,那么平面 π : x a + y b + z c = 1 \pi:\frac xa+\frac yb+\frac zc=1 π:ax+by+cz=1

  3. 一般式

    对点法式方程做简化,有 π : A x + B y + C z + D = 0 \pi:Ax+By+Cz+D=0 π:Ax+By+Cz+D=0

求两个平面夹角,我们可以利用两个平面法向量的夹角去求解(定义两平面夹角 θ ∈ [ 0 , π 2 ] \theta\in[0,\frac{\pi}2] θ[0,2π] )

法向量夹角余弦值的绝对值与平面夹角余弦值的绝对值相等


5.2 空间直线
  1. 点向式(对称式)

    M 0 ( x 0 , y 0 , z 0 ) ∈ l M_0(x_0,y_0,z_0)\in l M0(x0,y0,z0)l s ⃗ = { m , n , p } ∥ l \vec s=\{m, n, p\} \parallel l s ={m,n,p}l ,那么直线 l l l 可以表示为 x − x 0 m = y − y 0 n = z − z 0 p \frac{x-x_0}m=\frac{y-y_0}n=\frac{z-z_0}p mxx0=nyy0=pzz0

  2. 参数式方程

    M 0 ( x 0 , y 0 , z 0 ) ∈ l , s ⃗ = { m , n , p } ∥ l M_0(x_0,y_0,z_0)\in l,\vec s=\{m, n, p\} \parallel l M0(x0,y0,z0)ls ={m,n,p}l ,那么直线 l l l 可以表示为
    f ( x ) = { x = x 0 + m t y = y 0 + n t z = z 0 + k t f(x)=\left\{ \begin{aligned} x & = & x_0+mt \\ y & = & y_0+nt \\ z & = & z_0+kt \end{aligned} \right. f(x)= xyz===x0+mty0+ntz0+kt

  3. 一般式方程 l : { A 1 x + B 1 y + C 1 z + D 1 = 0 A 2 x + B 2 y + C 2 z + D 2 = 0 l:\left\{ \begin{aligned} A_1x+B_1y+C_1z+D_1=0\\A_2x+B_2y+C_2z+D_2=0 \end{aligned} \right. l:{A1x+B1y+C1z+D1=0A2x+B2y+C2z+D2=0

    如何由一般式方程得到直线的点法式?先求出直线上任意一点,然后有平面方程的法向量求得直线的方向向量


6. 杂项总结

(一) 夹角
  1. 两向量夹角 cos ⁡ θ = a ⃗ ⋅ b ⃗ ∣ a ⃗ ∣ ⋅ ∣ b ⃗ ∣ \cos \theta=\frac{\vec a\cdot\vec b}{|\vec a|\cdot|\vec b|} cosθ=a b a b ,范围 [ 0 , π ] [0,\pi] [0,π]
  2. 两平面夹角 cos ⁡ θ = ∣ n ⃗ 1 ⋅ n ⃗ 2 ∣ n ⃗ 1 ∣ ⋅ ∣ n ⃗ 2 ∣ ∣ \cos \theta=|\frac{\vec n_1\cdot\vec n_2}{|\vec n_1|\cdot|\vec n_2|}| cosθ=n 1n 2n 1n 2 ,范围 [ 0 , π 2 ] [0,\frac{\pi}2] [0,2π]
  3. 两直线夹角 cos ⁡ θ = ∣ s ⃗ 1 ⋅ s ⃗ 2 ∣ ∣ s ⃗ 1 ∣ ⋅ ∣ s ⃗ 2 ∣ \cos\theta = \frac{|\vec s_1\cdot \vec s_2|}{|\vec s_1| \cdot |\vec s_2|} cosθ=s 1s 2s 1s 2 ,范围 [ 0 , π 2 ] [0,\frac{\pi}2] [0,2π]
  4. 直线与平面夹角 sin ⁡ θ = ∣ n ⃗ ⋅ s ⃗ ∣ ∣ n ⃗ ∣ ⋅ ∣ s ⃗ ∣ \sin \theta=\frac{|\vec n\cdot\vec s|}{|\vec n|\cdot|\vec s|} sinθ=n s n s ,范围 [ 0 , π 2 ] [0,\frac{\pi}2] [0,2π]

(二)距离
  1. 两点间距离 d = ( x 2 − x 1 ) 2 + ( y 2 − y 1 ) 2 + ( z 2 − z 1 ) 2 d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2+(z_2-z_1)^2} d=(x2x1)2+(y2y1)2+(z2z1)2
  2. 点到平面距离 d = ∣ A x 0 + B y 0 + C z 0 + D ∣ A 2 + B 2 + C 2 d=\frac{|Ax_0+By_0+Cz_0+D|}{\sqrt{A^2+B^2+C^2}} d=A2+B2+C2 Ax0+By0+Cz0+D
  3. 两异面直线的距离 d = ∣ ( n ⃗ 1 × n ⃗ 2 ) ⋅ A A ′ ⃗ ∣ d=|(\vec n_1 \times \vec n_2)\cdot \vec {AA'}| d=(n 1×n 2)AA ,其中 A A ′ ⃗ \vec {AA'} AA 是两直线间任意两点的连线向量
  4. 两平行直线的距离 d = ∣ M 1 M 2 ⃗ × s ⃗ ∣ / ∣ s ⃗ ∣ d=|\vec{M_1M_2}\times\vec s| / |\vec s| d=M1M2 ×s ∣/∣s

(三)平面束

l l l 为直线,那么经过 l l l 的所有平面称为平面束

设直线 l : { A 1 x + B 1 y + C 1 z + D 1 = 0 A 2 x + B 2 y + C 2 z + D 2 = 0 l:\left\{ \begin{aligned} A_1x+B_1y+C_1z+D_1=0\\A_2x+B_2y+C_2z+D_2=0 \end{aligned} \right. l:{A1x+B1y+C1z+D1=0A2x+B2y+C2z+D2=0 ,那么过 l l l 的平面束方程为 π : A 1 x + B 1 y + C 1 z + D 1 + λ ( A 2 x + B 2 y + C 2 z + D 2 ) = 0 \pi:A_1x+B_1y+C_1z+D_1+\lambda(A_2x+B_2y+C_2z+D_2)=0 π:A1x+B1y+C1z+D1+λ(A2x+B2y+C2z+D2)=0

E.g.

求直线 l : { x + y − z − 1 = 0 x − y + z + 1 = 0 l:\left\{ \begin{aligned} x+y-z-1=0\\x-y+z+1=0 \end{aligned} \right. l:{x+yz1=0xy+z+1=0 在平面 x + y + z = 0 x+y+z=0 x+y+z=0 上的投影直线

解:

不难写出过 l l l 的平面束方程 π : ( λ + 1 ) x + ( 1 − λ ) y + ( λ − 1 ) z + λ − 1 = 0 \pi:(\lambda+1)x+(1-\lambda)y+(\lambda-1)z+\lambda-1=0 π:(λ+1)x+(1λ)y+(λ1)z+λ1=0

那么我们通过两平面相交能够得到这条投影直线,那么这两个平面必满足法向量相互垂直,于是我们就能轻易得到所求直线

{ λ + 1 , 1 − λ , λ − 1 } ⋅ { 1 , 1 , 1 } = 0 → λ = − 1 \{\lambda+1,1-\lambda,\lambda-1\}\cdot\{1,1,1\}=0\rightarrow \lambda=-1 {λ+1,1λ,λ1}{1,1,1}=0λ=1 ,直线易求(略)

空间解析几何

一、空间曲面及其方程

设方程 F ( x , y , z ) = 0 F(x,y,z)=0 F(x,y,z)=0 ,对于曲面 Σ \Sigma Σ 上的任意一点,都满足方程;且满足方程的点都在曲面上,那么这时称该方程为曲面的方程,该曲面为方程的曲面。

注:定义不难,主要是理解这种互相包含推导相等的思想


1. 柱面
  1. Σ : F ( x , y ) = 0 \Sigma:F(x,y)=0 Σ:F(x,y)=0​ 为母线平行于 z 轴的柱面,且其在 x O y xOy xOy​ 面的投影曲线为 l : { F ( x , y ) = 0 z = 0 l:\left\{ \begin{aligned} &F(x,y)=0\\&z=0 \end{aligned} \right. l:{F(x,y)=0z=0
  2. 其他柱面同理

2. 旋转曲面
  1. (二维平面绕坐标轴转)设 L : f ( x , y ) = 0 L:f(x,y)=0 L:f(x,y)=0 x O y xOy xOy 平面上一条直线,那么记 L L L x x x 轴旋转一周形成的曲面为 Σ x \Sigma x Σx
    在这里插入图片描述
    通过相关点法,不难得到形成的空间曲面的方程为 f ( x , ± y 2 + z 2 ) f(x,\pm \sqrt{y^2+z^2}) f(x,±y2+z2 )

  2. (三维平面绕任意轴旋转推导)空间曲线推导


二、空间曲线及其方程

  1. 一般形式: l : { F ( x , y , z ) = 0 G ( x , y , z ) = 0 l:\left\{ \begin{aligned} &F(x,y,z)=0\\&G(x,y,z)=0 \end{aligned} \right. l:{F(x,y,z)=0G(x,y,z)=0
    在这里插入图片描述

  2. 参数式: l : { x = R cos ⁡ ω t y = R sin ⁡ ω t z = v 0 t l:\left\{ \begin{aligned} &x=R\cos \omega t\\&y=R\sin \omega t\\&z=v_0 t \end{aligned} \right. l: x=Rcosωty=Rsinωtz=v0t
    在这里插入图片描述

  3. 上式更一般的情况是 l : { x = Φ ( t ) y = Ψ ( t ) z = Ω ( t ) l:\left\{ \begin{aligned} &x=\Phi(t) \\&y=\Psi(t)\\&z=\Omega(t) \end{aligned} \right. l: x=Φ(t)y=Ψ(t)z=Ω(t)


三、投影曲线

记空间曲线 l : { F ( x , y , z ) = 0 G ( x , y , z ) = 0 l:\left\{ \begin{aligned} &F(x,y,z)=0\\&G(x,y,z)=0 \end{aligned} \right. l:{F(x,y,z)=0G(x,y,z)=0 ,若投影在 x O y xOy xOy 面,说明 z = 0 z=0 z=0 ,那么我们只需要将这两个曲线中的 z z z 联立消去即可

记得到的平面曲线方程为 H ( x , y ) = 0 H(x,y)=0 H(x,y)=0

那么投影曲线的表达式为 l : { H ( x , y ) = 0 z = 0 l:\left\{ \begin{aligned} &H(x,y)=0\\&z=0 \end{aligned} \right. l:{H(x,y)=0z=0

  • 2
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
### 回答1: 线性代数空间解析几何PDF是一本涉及线性代数空间解析几何知识的电子书。线性代数是数学中的一个重要分支,研究向量空间及其上的线性变换和线性方程组等问题。它的应用广泛,被用于物理学、经济学、计算机科学等领域。空间解析几何是数学中的一个分支,用于研究几何空间中的点、直线、平面等几何对象的性质和关系。它通过使用坐标系和代数方法,可以更方便地进行几何问题的分析和求解。 这本电子书综合了线性代数空间解析几何的内容,从基础概念开始介绍,逐渐深入到更高级的内容。它包括了向量的定义、向量空间的性质、线性变换、矩阵和行列式、特征值和特征向量等线性代数的重要概念。同时,它也涵盖了三维空间中的点与向量、直线和平面的方程、空间中线性方程组的解等空间解析几何的内容。 这本PDF书籍可以作为线性代数空间解析几何方面的入门教材,也可作为进一步学习和研究的参考资料。它提供了易于理解的解释和详细的例题,加强了读者对这些数学概念的理解和应用能力。此外,电子书的形式使得读者能够随时随地方便地进行学习和复习。 总之,线性代数空间解析几何PDF是一本涵盖了线性代数空间解析几何知识的电子书,对于学习者来说,它是一份非常有价值的学习资料。 ### 回答2: 线性代数空间解析几何是一本关于数学学科的书籍,它涵盖了线性代数空间解析几何的内容。线性代数是研究向量空间和线性变换的一门学科,它在许多领域都有广泛的应用,包括物理学、工程学、计算机科学等。线性代数的基本概念包括向量、矩阵、矩阵运算和矩阵方程等,通过对这些概念的理解和运用,可以解决许多实际问题。 空间解析几何是研究空间中点、直线、平面等几何对象的一门学科,它利用向量的方法研究几何问题。空间解析几何的基本概念包括点的坐标、向量的加法和数量积、直线和平面的方程等。通过这些概念的运用,可以描述和研究空间中的几何对象和它们之间的关系。 这本书将线性代数空间解析几何的内容有机地结合在一起,旨在帮助读者理解并应用这两个学科的知识。它从基础概念开始介绍,包括向量的表示和运算、线性方程组的解法和矩阵的性质等。随后,它讲解了线性变换、特征值和特征向量等重要概念。最后,它介绍了空间解析几何的基本概念和相关定理。 这本书的特点之一是注重理论与实际应用的结合。它不仅提供了理论知识和推导过程,还给出了一些实际问题的解题思路和方法。此外,它配有大量的例题和习题,以帮助读者巩固所学内容。总之,线性代数空间解析几何是一本系统、全面、实用的教材,适合数学、物理、工程等专业的学生学习和参考。 ### 回答3: 线性代数空间解析几何是一本关于数学领域的教材或参考书籍,主要介绍线性代数空间解析几何的基本概念、原理和应用。线性代数是数学中的一门重要学科,研究向量空间、线性变换、矩阵和行列式等内容。它在数学、物理、工程、计算机科学等领域中都有广泛的应用。 而空间解析几何则是用数学的方法来研究几何学问题,主要关注在三维空间中的点、直线、平面以及它们之间的关系和性质。空间解析几何主要使用向量的方法来进行求解,通过坐标系中的向量运算、方程和参数方程,来描述和解决几何问题。 这本书以简洁明了的方式讲解了线性代数空间解析几何的基本理论,深入浅出地介绍了相关的数学概念和定理,并通过大量的示例和习题来帮助读者更好地理解和掌握知识。它既适合作为高等学校数学专业的教材,也适合作为自学的参考书。 对于学习线性代数空间解析几何的读者来说,这本书是一本很好的选择。它将复杂的数学概念和方法进行了系统化的整理,让读者能够更好地理解和应用相关的知识。同时,这本书还提供了丰富的例题和习题,帮助读者锻炼和巩固所学的知识,提高解题能力。 总之,线性代数空间解析几何是一本重要的数学教材,通过对线性代数空间解析几何的详细讲解,帮助读者建立起坚实的数学基础,并为进一步学习更高级、更复杂的数学知识打下良好的基础。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

szfmsmdx

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值