目标跟踪数据库简介(转)
目标跟踪作为计算机视觉中的一个大方向,人们对它的研究已经几十年了,但是到目前为止并没有哪个算法能达到100%的不跟丢。目标跟踪过程中存在着许多复杂干扰,比如遮挡,形变,背景干扰,光照变化等,这也是我们今后要解决的主要问题。
一、数据库简介
从论文中我们可以发现,目标跟踪领域已经形成了几个重要的数据集和一个评价标准。如果写论文必定绕不开这几个数据集和这个评价标准。
数据集
- 首先,用的最广泛的是OTB-50和OTB-100,网址 Object Tracking Benchmark,里面涉及到灰度图像和彩色图像,均可以免费下载,涉及到目标跟踪的11个属性,包括光照变化、尺度变化、遮挡、形变、运动模糊、快速运动、平面内旋转、平面外旋转、出视野、背景干扰、低像素。每个图像序列都对应着两个或多个属性,每个序列都对应着一个txt文件,记录着人工标注的目标中心位置和目标的大小。更多的详细信息请参阅博客在线目标跟踪:一种评估基准 A Benchmark 翻译。
- VOT数据集是基于每年一次的VOT比赛的,每年都会有新的数据集产生,当然其中一部分图像序列是和OTB重合的,但是总的来说VOT数据集略难于OTB数据集,一般用VOT16,一般在这两个数据集上跑的效果都好,才算真的好,如果只在一个数据集上效果好,那只能说明这个算法的泛化能力还不够。OTB的网址Visual Object Tracking。
- Temple Color 128数据集里面包含的全是彩色序列,部分序列也是和OTB重合的,如果算法只适用于彩色序列的话可以在此数据集上跑一下,此数据集也是免费下载,网址Temple Color 128 - Color Tracking Benchmark。
- VIVID Tracking数据集里面包含9个序列,均是从高空拍摄的车辆视频图像,包括灰度图像和彩色图像,相对时间都比较长,目标也比较小,遮挡情况比较多,网址VIVID Tracking Evaluation Web Site 。
- UAV123 Dataset数据集是均是通过无人机拍摄的彩色图像,但是需要翻墙下载,如果是做无人机目标跟踪方面的同学,此数据集一定必不可少,网址A Benchmark and Simulator for UAV Tracking。
除此之外还有许多目标跟踪的数据集,在此就不一一列举。
评价标准
目前用的最多的是OTB的评价标准,它可以给出各个算法的精确度图和成功率图,和各个属性的精确度图和成功率图,并对各个算法进行排序。除了有一次评估OPE外,还有时间鲁棒性评估(TRE),空间鲁棒性评估 (SRE),但是一般论文里都只用OPE,至于怎么用这个评估标准,可参考在线目标跟踪:一种评估基准 A Benchmark 翻译和目标跟踪 benchmark用法 添加、测试自己的代码。
二、相关滤波目标跟踪参考资料汇总
1、知乎目标跟踪之NIUBILITY的相关滤波专栏;
2、知乎目标跟踪算法专栏;
3、GitHub,foolwood代码汇总;
4、Github,HakaseH代码汇总;