微积分复习(四)多元函数积分学

二重积分

二重积分( f ( x , y ) f(x,y) f(x,y) σ \sigma σ 上的黎曼积分) ∬ σ f ( x , y ) d σ = lim ⁡ λ → 0 ∑ i = 1 n f ( ξ i , η i ) Δ σ i \displaystyle\iint_{\sigma}{f(x,y)\mathrm{d}\sigma}=\displaystyle\lim_{\lambda \to 0}{\displaystyle\sum_{i=1}^{n}{f(\xi_i,\eta_i)\Delta \sigma_i}} σf(x,y)dσ=λ0limi=1nf(ξi,ηi)Δσi
绝对值不等式 ∣ ∬ σ f ( x , y ) d σ ∣ ≤ ∬ σ ∣ f ( x , y ) ∣ d σ \left|\displaystyle\iint_{\sigma}{f(x,y)\mathrm{d}\sigma}\right| \leq \displaystyle\iint_{\sigma}{|f(x,y)|\mathrm{d}\sigma} σf(x,y)dσσf(x,y)dσ
二重积分中值定理 若 f ( x , y ) f(x,y) f(x,y) 在有界闭区域 σ \sigma σ 上连续,则至少存在一点 P ( x ∗ , y ∗ ) ∈ σ P(x^*,y^*) \in \sigma P(x,y)σ,使得 ∬ σ f ( x , y ) d σ = f ( x ∗ , y ∗ ) σ \displaystyle\iint_{\sigma}{f(x,y)\mathrm{d}\sigma}=f(x^*,y^*)\sigma σf(x,y)dσ=f(x,y)σ,其中 f ( x ∗ , y ∗ ) = 1 σ ∬ σ f ( x , y ) d σ f(x^*,y^*)=\dfrac1\sigma\displaystyle\iint_{\sigma}{f(x,y)\mathrm{d}\sigma} f(x,y)=σ1σf(x,y)dσ 称为 f ( x , y ) f(x,y) f(x,y) σ \sigma σ 上的平均值。
推论 若 m ≤ f ( x , y ) ≤ M m \leq f(x,y) \leq M mf(x,y)M,则 m σ ≤ ∬ σ f ( x , y ) d σ ≤ M σ m\sigma \leq \displaystyle\iint_{\sigma}{f(x,y)\mathrm{d}\sigma} \leq M\sigma mσσf(x,y)dσMσ
二重积分转化为累次积分 ∬ σ f ( x , y ) d σ = ∬ σ f ( x , y ) d x d y = ∫ a b d x ∫ φ 1 ( x ) φ 2 ( x ) f ( x , y ) d y = ∫ c d d y ∫ ψ 1 ( y ) ψ 2 ( y ) f ( x , y ) d x \begin{aligned}\displaystyle\iint_{\sigma}{f(x,y)\mathrm{d}\sigma}&=\displaystyle\iint_{\sigma}{f(x,y)\mathrm{d}x\mathrm{d}y} \\ &=\displaystyle\int_{a}^{b}{\mathrm{d}x}\displaystyle\int_{\varphi_1(x)}^{\varphi_2(x)}{f(x,y)\mathrm{d}y}=\displaystyle\int_{c}^{d}{\mathrm{d}y}\displaystyle\int_{\psi_1(y)}^{\psi_2(y)}{f(x,y)\mathrm{d}x}\end{aligned} σf(x,y)dσ=σf(x,y)dxdy=abdxφ1(x)φ2(x)f(x,y)dy=cddyψ1(y)ψ2(y)f(x,y)dx二重积分的极坐标变换 { x = r cos ⁡ θ y = r sin ⁡ θ \begin{cases}x=r\cos\theta \\ y=r\sin\theta\end{cases} {x=rcosθy=rsinθ ∬ σ f ( x , y ) d σ = ∬ σ f ( r cos ⁡ θ , r sin ⁡ θ ) r d r d θ = ∫ α β d θ ∫ r 1 ( θ ) r 2 ( θ ) f ( r cos ⁡ θ , r sin ⁡ θ ) r d r = ∫ r 1 r 2 d r ∫ θ 1 ( r ) θ 2 ( r ) f ( r cos ⁡ θ , r sin ⁡ θ ) r d θ \begin{aligned}\displaystyle\iint_{\sigma}{f(x,y)\mathrm{d}\sigma}&=\displaystyle\iint_{\sigma}{f(r\cos\theta,r\sin\theta)r\mathrm{d}r\mathrm{d}\theta} \\ &=\displaystyle\int_{\alpha}^{\beta}{\mathrm{d}\theta}\displaystyle\int_{r_1(\theta)}^{r_2(\theta)}{f(r\cos\theta,r\sin\theta)r\mathrm{d}r}=\displaystyle\int_{r_1}^{r_2}{\mathrm{d}r}\displaystyle\int_{\theta_1(r)}^{\theta_2(r)}{f(r\cos\theta,r\sin\theta)r\mathrm{d}\theta}\end{aligned} σf(x,y)dσ=σf(rcosθ,rsinθ)rdrdθ=αβdθr1(θ)r2(θ)f(rcosθ,rsinθ)rdr=r1r2drθ1(r)θ2(r)f(rcosθ,rsinθ)rdθ ⟸ d σ = 1 2 ( r + d r ) 2 sin ⁡ d θ − 1 2 r 2 sin ⁡ d θ = r d r sin ⁡ d θ + 1 2 ( d r ) 2 sin ⁡ d θ ∼ r d r sin ⁡ d θ ∼ r d r d θ \Longleftarrow \mathrm{d}\sigma=\dfrac12(r+\mathrm{d}r)^2\sin\mathrm{d}\theta-\dfrac12r^2\sin\mathrm{d}\theta=r\mathrm{d}r\sin\mathrm{d}\theta+\dfrac12(\mathrm{d}r)^2\sin\mathrm{d}\theta \sim r\mathrm{d}r\sin\mathrm{d}\theta \sim r\mathrm{d}r\mathrm{d}\theta dσ=21(r+dr)2sindθ21r2sindθ=rdrsindθ+21(dr)2sindθrdrsindθrdrdθ
二重积分的一般坐标变换(雅可比行列式) ∬ σ f ( x , y ) d x d y = ∬ σ g ( u , v ) ∣ J ∣ d u d v \displaystyle\iint_{\sigma}{f(x,y)\mathrm{d}x\mathrm{d}y}=\displaystyle\iint_{\sigma}{g(u,v)|J|\mathrm{d}u\mathrm{d}v} σf(x,y)dxdy=σg(u,v)Jdudv J = ∂ ( x , y ) ∂ ( u , v ) = ∣ ∂ x ∂ u ∂ x ∂ v ∂ y ∂ u ∂ y ∂ v ∣ = 1 ∂ ( u , v ) ∂ ( x , y ) = ∣ ∂ u ∂ x ∂ u ∂ y ∂ v ∂ x ∂ v ∂ y ∣ − 1 J=\dfrac{\partial(x,y)}{\partial(u,v)}=\begin{vmatrix}\dfrac{\partial x}{\partial u} & \dfrac{\partial x}{\partial v} \\ \dfrac{\partial y}{\partial u} & \dfrac{\partial y}{\partial v}\end{vmatrix}=\dfrac{1}{\dfrac{\partial(u,v)}{\partial(x,y)}}=\begin{vmatrix}\dfrac{\partial u}{\partial x} & \dfrac{\partial u}{\partial y} \\ \dfrac{\partial v}{\partial x} & \dfrac{\partial v}{\partial y}\end{vmatrix}^{-1} J=(u,v)(x,y)=uxuyvxvy=(x,y)(u,v)1=xuxvyuyv1

三重积分

三重积分(密度函数 f ( x , y , z ) f(x,y,z) f(x,y,z) 在空间立体 V V V 上的质量) M = ∭ V f ( x , y , z ) d V = lim ⁡ λ → 0 ∑ i = 1 n f ( ξ i , η i , ζ i ) Δ V i M=\displaystyle\iiint_{V}{f(x,y,z)\mathrm{d}V}=\displaystyle\lim_{\lambda \to 0}{\displaystyle\sum_{i=1}^{n}{f(\xi_i,\eta_i,\zeta_i)\Delta V_i}} M=Vf(x,y,z)dV=λ0limi=1nf(ξi,ηi,ζi)ΔVi
三重积分转化为累次积分(投影法) ∭ V f ( x , y , z ) d V = ∭ V f ( x , y , z ) d x d y d z = ∫ a b d x ∫ φ 1 ( x ) φ 2 ( x ) d y ∫ z 1 ( x , y ) z 2 ( x , y ) f ( x , y , z ) d z = ∫ c d d y ∫ ψ 1 ( y ) ψ 2 ( y ) d x ∫ z 1 ( x , y ) z 2 ( x , y ) f ( x , y , z ) d z = ∬ σ z x d σ ∫ y 1 ( x , z ) y 2 ( x , z ) f ( x , y , z ) d y = ∬ σ y z d σ ∫ x 1 ( y , z ) x 2 ( y , z ) f ( x , y , z ) d x \begin{aligned}\displaystyle\iiint_{V}{f(x,y,z)\mathrm{d}V}&=\displaystyle\iiint_{V}{f(x,y,z)\mathrm{d}x\mathrm{d}y\mathrm{d}z} \\ &=\displaystyle\int_{a}^{b}{\mathrm{d}x}\displaystyle\int_{\varphi_1(x)}^{\varphi_2(x)}{\mathrm{d}y}\displaystyle\int_{z_1(x,y)}^{z_2(x,y)}{f(x,y,z)\mathrm{d}z}=\displaystyle\int_{c}^{d}{\mathrm{d}y}\displaystyle\int_{\psi_1(y)}^{\psi_2(y)}{\mathrm{d}x}\displaystyle\int_{z_1(x,y)}^{z_2(x,y)}{f(x,y,z)\mathrm{d}z} \\ &=\displaystyle\iint_{\sigma_{zx}}{\mathrm{d}\sigma}\displaystyle\int_{y_1(x,z)}^{y_2(x,z)}{f(x,y,z)\mathrm{d}y} \\ &=\displaystyle\iint_{\sigma_{yz}}{\mathrm{d}\sigma}\displaystyle\int_{x_1(y,z)}^{x_2(y,z)}{f(x,y,z)\mathrm{d}x}\end{aligned} Vf(x,y,z)dV=Vf(x,y,z)dxdydz=abdxφ1(x)φ2(x)dyz1(x,y)z2(x,y)f(x,y,z)dz=cddyψ1(y)ψ2(y)dxz1(x,y)z2(x,y)f(x,y,z)dz=σzxdσy1(x,z)y2(x,z)f(x,y,z)dy=σyzdσx1(y,z)x2(y,z)f(x,y,z)dx三重积分转化为累次积分(截割法) ∭ V f ( x , y , z ) d V = ∭ V f ( x , y , z ) d x d y d z = ∫ e f d z ∬ D z f ( x , y , z ) d σ = ∫ e f d z ∬ D z f ( x , y , z ) d x d y = ∫ c d d y ∬ D y f ( x , y , z ) d σ = ∫ a b d x ∬ D x f ( x , y , z ) d σ \begin{aligned}\displaystyle\iiint_{V}{f(x,y,z)\mathrm{d}V}&=\displaystyle\iiint_{V}{f(x,y,z)\mathrm{d}x\mathrm{d}y\mathrm{d}z} \\ &=\displaystyle\int_{e}^{f}{\mathrm{d}z}\displaystyle\iint_{D_z}{f(x,y,z)\mathrm{d}\sigma}=\displaystyle\int_{e}^{f}{\mathrm{d}z}\displaystyle\iint_{D_z}{f(x,y,z)\mathrm{d}x\mathrm{d}y} \\ &=\displaystyle\int_{c}^{d}{\mathrm{d}y}\displaystyle\iint_{D_y}{f(x,y,z)\mathrm{d}\sigma} \\ &=\displaystyle\int_{a}^{b}{\mathrm{d}x}\displaystyle\iint_{D_x}{f(x,y,z)\mathrm{d}\sigma}\end{aligned} Vf(x,y,z)dV=Vf(x,y,z)dxdydz=efdzDzf(x,y,z)dσ=efdzDzf(x,y,z)dxdy=cddyDyf(x,y,z)dσ=abdxDxf(x,y,z)dσ三重积分的柱坐标变换 { x = r cos ⁡ θ y = r sin ⁡ θ z = z \begin{cases}x=r\cos\theta \\ y=r\sin\theta \\ z=z\end{cases} x=rcosθy=rsinθz=z ∭ V f ( x , y , z ) d V = ∭ V f ( r cos ⁡ θ , r sin ⁡ θ , z ) r d r d θ d z = ∬ σ r d r d θ ∫ z 1 ( r , θ ) z 2 ( r , θ ) f ( r cos ⁡ θ , r sin ⁡ θ , z ) d z \displaystyle\iiint_{V}{f(x,y,z)\mathrm{d}V}=\displaystyle\iiint_{V}{f(r\cos\theta,r\sin\theta,z)r\mathrm{d}r\mathrm{d}\theta\mathrm{d}z}=\displaystyle\iint_{\sigma}{r\mathrm{d}r\mathrm{d}\theta}\displaystyle\int_{z_1(r,\theta)}^{z_2(r,\theta)}{f(r\cos\theta,r\sin\theta,z)\mathrm{d}z} Vf(x,y,z)dV=Vf(rcosθ,rsinθ,z)rdrdθdz=σrdrdθz1(r,θ)z2(r,θ)f(rcosθ,rsinθ,z)dz三重积分的球坐标变换 { x = ρ sin ⁡ φ cos ⁡ θ y = ρ sin ⁡ φ sin ⁡ θ z = ρ cos ⁡ φ \begin{cases}x=\rho\sin\varphi\cos\theta \\ y=\rho\sin\varphi\sin\theta \\ z=\rho\cos\varphi\end{cases} x=ρsinφcosθy=ρsinφsinθz=ρcosφ ∭ V f ( x , y , z ) d V = ∭ V f ( ρ sin ⁡ φ cos ⁡ θ , ρ sin ⁡ φ sin ⁡ θ , ρ cos ⁡ φ ) ρ 2 sin ⁡ φ d ρ d φ d θ \displaystyle\iiint_{V}{f(x,y,z)\mathrm{d}V}=\displaystyle\iiint_{V}{f(\rho\sin\varphi\cos\theta,\rho\sin\varphi\sin\theta,\rho\cos\varphi)\rho^2\sin\varphi\mathrm{d}\rho\mathrm{d}\varphi\mathrm{d}\theta} Vf(x,y,z)dV=Vf(ρsinφcosθ,ρsinφsinθ,ρcosφ)ρ2sinφdρdφdθ ⟸ d V = ρ tan ⁡ d φ ⋅ ρ sin ⁡ φ tan ⁡ d θ ⋅ d ρ = ρ 2 sin ⁡ φ d ρ tan ⁡ d φ tan ⁡ d θ ∼ ρ 2 sin ⁡ φ d ρ d φ d θ \Longleftarrow \mathrm{d}V=\rho\tan\mathrm{d}\varphi \cdot \rho\sin\varphi\tan\mathrm{d}\theta \cdot \mathrm{d}\rho=\rho^2\sin\varphi\mathrm{d}\rho\tan\mathrm{d}\varphi\tan\mathrm{d}\theta \sim \rho^2\sin\varphi\mathrm{d}\rho\mathrm{d}\varphi\mathrm{d}\theta dV=ρtandφρsinφtandθdρ=ρ2sinφdρtandφtandθρ2sinφdρdφdθ
三重积分的一般坐标变换(雅可比行列式) ∭ V f ( x , y , z ) d x d y d z = ∭ V g ( u , v , w ) ∣ J ∣ d u d v d w \displaystyle\iiint_{V}{f(x,y,z)\mathrm{d}x\mathrm{d}y\mathrm{d}z}=\displaystyle\iiint_{V}{g(u,v,w)|J|\mathrm{d}u\mathrm{d}v\mathrm{d}w} Vf(x,y,z)dxdydz=Vg(u,v,w)Jdudvdw J = ∂ ( x , y , z ) ∂ ( u , v , w ) = ∣ ∂ x ∂ u ∂ x ∂ v ∂ x ∂ w ∂ y ∂ u ∂ y ∂ v ∂ y ∂ w ∂ z ∂ u ∂ z ∂ v ∂ z ∂ w ∣ = 1 ∂ ( u , v , w ) ∂ ( x , y , z ) = ∣ ∂ u ∂ x ∂ u ∂ y ∂ u ∂ z ∂ v ∂ x ∂ v ∂ y ∂ v ∂ z ∂ w ∂ x ∂ w ∂ y ∂ w ∂ z ∣ − 1 J=\dfrac{\partial(x,y,z)}{\partial(u,v,w)}=\begin{vmatrix}\dfrac{\partial x}{\partial u} & \dfrac{\partial x}{\partial v} & \dfrac{\partial x}{\partial w} \\ \dfrac{\partial y}{\partial u} & \dfrac{\partial y}{\partial v} & \dfrac{\partial y}{\partial w} \\ \dfrac{\partial z}{\partial u} & \dfrac{\partial z}{\partial v} & \dfrac{\partial z}{\partial w}\end{vmatrix}=\dfrac{1}{\dfrac{\partial(u,v,w)}{\partial(x,y,z)}}=\begin{vmatrix}\dfrac{\partial u}{\partial x} & \dfrac{\partial u}{\partial y} & \dfrac{\partial u}{\partial z} \\ \dfrac{\partial v}{\partial x} & \dfrac{\partial v}{\partial y} & \dfrac{\partial v}{\partial z} \\ \dfrac{\partial w}{\partial x} & \dfrac{\partial w}{\partial y} & \dfrac{\partial w}{\partial z}\end{vmatrix}^{-1} J=(u,v,w)(x,y,z)=uxuyuzvxvyvzwxwywz=(x,y,z)(u,v,w)1=xuxvxwyuyvywzuzvzw1

第一类线面积分

第一类曲线积分(弧长积分) ∫ Γ f ( P ) d s = lim ⁡ λ → 0 ∑ i = 1 n f ( P i ) Δ s i = ∫ α β f ( x ( t ) , y ( t ) , z ( t ) ) x ′ 2 ( t ) + y ′ 2 ( t ) + z ′ 2 ( t ) d t \displaystyle\int_{\Gamma}{f(P)\mathrm{d}s}=\displaystyle\lim_{\lambda \to 0}{\displaystyle\sum_{i=1}^{n}{f(P_i)\Delta s_i}}=\displaystyle\int_{\alpha}^{\beta}{f(x(t),y(t),z(t))\sqrt{x'^2(t)+y'^2(t)+z'^2(t)}\mathrm{d}t} Γf(P)ds=λ0limi=1nf(Pi)Δsi=αβf(x(t),y(t),z(t))x2(t)+y2(t)+z2(t) dt ⟸ d s = [ x ( t + d t ) − x ( t ) ] 2 + [ y ( t + d t ) − y ( t ) ] 2 + [ z ( t + d t ) − z ( t ) ] 2 = x ′ 2 ( ξ 1 ) + y ′ 2 ( ξ 2 ) + z ′ 2 ( ξ 3 ) d t   ( t < ξ 1 , ξ 2 , ξ 3 < t + d t ) = x ′ 2 ( t ) + y ′ 2 ( t ) + z ′ 2 ( t ) d t \begin{aligned}\Longleftarrow \mathrm{d}s&=\sqrt{[x(t+\mathrm{d}t)-x(t)]^2+[y(t+\mathrm{d}t)-y(t)]^2+[z(t+\mathrm{d}t)-z(t)]^2} \\ &=\sqrt{x'^2(\xi_1)+y'^2(\xi_2)+z'^2(\xi_3)}\mathrm{d}t \ (t<\xi_1,\xi_2,\xi_3<t+\mathrm{d}t) \\ &=\sqrt{x'^2(t)+y'^2(t)+z'^2(t)}\mathrm{d}t\end{aligned} ds=[x(t+dt)x(t)]2+[y(t+dt)y(t)]2+[z(t+dt)z(t)]2 =x2(ξ1)+y2(ξ2)+z2(ξ3) dt (t<ξ1,ξ2,ξ3<t+dt)=x2(t)+y2(t)+z2(t) dt
平面曲线弧长积分 ∫ Γ f ( x , y ) d s = ∫ α β f ( x ( t ) , y ( t ) ) x ′ 2 ( t ) + y ′ 2 ( t ) d t \displaystyle\int_{\Gamma}{f(x,y)\mathrm{d}s}=\displaystyle\int_{\alpha}^{\beta}{f(x(t),y(t))\sqrt{x'^2(t)+y'^2(t)}\mathrm{d}t} Γf(x,y)ds=αβf(x(t),y(t))x2(t)+y2(t) dt
(1) Γ : y = φ ( x ) , x ∈ [ a , b ] ⟹ ∫ Γ f ( x , y ) d s = ∫ a b f ( x , φ ( x ) ) 1 + φ ′ 2 ( x ) d x \Gamma:y=\varphi(x),x \in [a,b] \Longrightarrow \displaystyle\int_{\Gamma}{f(x,y)\mathrm{d}s}=\displaystyle\int_{a}^{b}{f(x,\varphi(x))\sqrt{1+\varphi'^2(x)}\mathrm{d}x} Γ:y=φ(x),x[a,b]Γf(x,y)ds=abf(x,φ(x))1+φ2(x) dx
(2) Γ : x = ψ ( y ) , y ∈ [ c , d ] ⟹ ∫ Γ f ( x , y ) d s = ∫ c d f ( ψ ( y ) , y ) 1 + ψ ′ 2 ( y ) d y \Gamma:x=\psi(y),y \in [c,d] \Longrightarrow \displaystyle\int_{\Gamma}{f(x,y)\mathrm{d}s}=\displaystyle\int_{c}^{d}{f(\psi(y),y)\sqrt{1+\psi'^2(y)}\mathrm{d}y} Γ:x=ψ(y),y[c,d]Γf(x,y)ds=cdf(ψ(y),y)1+ψ2(y) dy
(3) Γ : r = r ( θ ) , θ ∈ [ α , β ] ⟹ ∫ Γ f ( x , y ) d s = ∫ α β f ( r cos ⁡ θ , r sin ⁡ θ ) r 2 ( θ ) + r ′ 2 ( θ ) d θ \Gamma:r=r(\theta),\theta \in [\alpha,\beta] \Longrightarrow \displaystyle\int_{\Gamma}{f(x,y)\mathrm{d}s}=\displaystyle\int_{\alpha}^{\beta}{f(r\cos\theta,r\sin\theta)\sqrt{r^2(\theta)+r'^2(\theta)}\mathrm{d}\theta} Γ:r=r(θ),θ[α,β]Γf(x,y)ds=αβf(rcosθ,rsinθ)r2(θ)+r2(θ) dθ
第一类曲面积分 ∬ S f ( P ) d S = lim ⁡ λ → 0 ∑ i = 1 n f ( P i ) Δ S i \displaystyle\iint_{S}{f(P)\mathrm{d}S}=\displaystyle\lim_{\lambda \to 0}{\displaystyle\sum_{i=1}^{n}{f(P_i)\Delta S_i}} Sf(P)dS=λ0limi=1nf(Pi)ΔSi
(1) S : z = z ( x , y ) , ( x , y ) ∈ σ x y ⟹ ∬ S f ( x , y , z ) d S = ∬ σ x y f ( x , y , z ( x , y ) ) 1 + z x ′ 2 + z y ′ 2 d σ S:z=z(x,y),(x,y) \in \sigma_{xy} \Longrightarrow \displaystyle\iint_{S}{f(x,y,z)\mathrm{d}S}=\displaystyle\iint_{\sigma_{xy}}{f(x,y,z(x,y))\sqrt{1+z_x'^2+z_y'^2}}\mathrm{d}\sigma S:z=z(x,y),(x,y)σxySf(x,y,z)dS=σxyf(x,y,z(x,y))1+zx2+zy2 dσ
  取面微元 d S \mathrm{d}S dS 上一点 P ( x , y , z ( x , y ) ) P(x,y,z(x,y)) P(x,y,z(x,y)),则该点处法线的方向矢量 n = ± { z x ′ , z y ′ , − 1 } \boldsymbol{n}=\pm \{z_x',z_y',-1\} n=±{zx,zy,1},记 γ \gamma γ n \boldsymbol{n} n z z z 轴正方向的夹角,有 cos ⁡ γ = ± 1 1 + z x ′ 2 + z y ′ 2 \cos\gamma=\pm \dfrac{1}{\sqrt{1+z_x'^2+z_y'^2}} cosγ=±1+zx2+zy2 1,故 d S \mathrm{d}S dS O x y Oxy Oxy 平面上的投影面积 d σ = ∣ cos ⁡ γ ∣ ⋅ d S \mathrm{d}\sigma=|\cos\gamma| \cdot \mathrm{d}S dσ=cosγdS,可得 d S = d σ ∣ cos ⁡ γ ∣ = 1 + z x ′ 2 + z y ′ 2 d σ \mathrm{d}S=\dfrac{\mathrm{d}\sigma}{|\cos\gamma|}=\sqrt{1+z_x'^2+z_y'^2}\mathrm{d}\sigma dS=cosγdσ=1+zx2+zy2 dσ
(2) S : y = y ( x , z ) , ( x , z ) ∈ σ z x ⟹ ∬ S f ( x , y , z ) d S = ∬ σ z x f ( x , y ( x , z ) , z ) 1 + y x ′ 2 + y z ′ 2 d σ S:y=y(x,z),(x,z) \in \sigma_{zx} \Longrightarrow \displaystyle\iint_{S}{f(x,y,z)\mathrm{d}S}=\displaystyle\iint_{\sigma_{zx}}{f(x,y(x,z),z)\sqrt{1+y_x'^2+y_z'^2}}\mathrm{d}\sigma S:y=y(x,z),(x,z)σzxSf(x,y,z)dS=σzxf(x,y(x,z),z)1+yx2+yz2 dσ
(3) S : x = x ( y , z ) , ( y , z ) ∈ σ y z ⟹ ∬ S f ( x , y , z ) d S = ∬ σ y z f ( x ( y , z ) , y , z ) 1 + x y ′ 2 + x z ′ 2 d σ S:x=x(y,z),(y,z) \in \sigma_{yz} \Longrightarrow \displaystyle\iint_{S}{f(x,y,z)\mathrm{d}S}=\displaystyle\iint_{\sigma_{yz}}{f(x(y,z),y,z)\sqrt{1+x_y'^2+x_z'^2}}\mathrm{d}\sigma S:x=x(y,z),(y,z)σyzSf(x,y,z)dS=σyzf(x(y,z),y,z)1+xy2+xz2 dσ
(4) S : F ( x , y , z ) = 0 S:F(x,y,z)=0 S:F(x,y,z)=0 确定隐函数 z = z ( x , y ) , ( x , y ) ∈ σ x y z=z(x,y),(x,y) \in \sigma_{xy} z=z(x,y),(x,y)σxy,且 ∂ z ∂ x = − F x ′ F z ′ \dfrac{\partial z}{\partial x}=-\dfrac{F_x'}{F_z'} xz=FzFx ∂ z ∂ y = − F y ′ F z ′ \dfrac{\partial z}{\partial y}=-\dfrac{F_y'}{F_z'} yz=FzFy 连续,则 ∬ S f ( x , y , z ) d S = ∬ σ x y f ( x , y , z ( x , y ) ) F x ′ 2 + F y ′ 2 + F z ′ 2 ∣ F z ′ ∣ d σ \displaystyle\iint_{S}{f(x,y,z)\mathrm{d}S}=\displaystyle\iint_{\sigma_{xy}}{f(x,y,z(x,y))\dfrac{\sqrt{F_x'^2+F_y'^2+F_z'^2}}{|F_z'|}\mathrm{d}\sigma} Sf(x,y,z)dS=σxyf(x,y,z(x,y))FzFx2+Fy2+Fz2 dσ

点函数积分

点函数积分 ∫ Ω f ( P ) d Ω = lim ⁡ λ → 0 ∑ i = 1 n f ( P i ) Δ Ω i \displaystyle\int_{\Omega}{f(P)\mathrm{d}\Omega}=\displaystyle\lim_{\lambda \to 0}{\displaystyle\sum_{i=1}^{n}{f(P_i)\Delta \Omega_i}} Ωf(P)dΩ=λ0limi=1nf(Pi)ΔΩi
点函数积分保号性 若 f ( P ) ≤ g ( P ) , P ∈ Ω f(P) \leq g(P),P \in \Omega f(P)g(P),PΩ,则 ∫ Ω f ( P ) d Ω ≤ ∫ Ω g ( P ) d Ω \displaystyle\int_{\Omega}{f(P)\mathrm{d}\Omega} \leq \displaystyle\int_{\Omega}{g(P)\mathrm{d}\Omega} Ωf(P)dΩΩg(P)dΩ;若连续函数 f ( P ) ≤ g ( P ) , P ∈ Ω f(P) \leq g(P),P \in \Omega f(P)g(P),PΩ f ( P ) ≢ g ( P ) f(P) \not\equiv g(P) f(P)g(P),则 ∫ Ω f ( P ) d Ω < ∫ Ω g ( P ) d Ω \displaystyle\int_{\Omega}{f(P)\mathrm{d}\Omega}<\displaystyle\int_{\Omega}{g(P)\mathrm{d}\Omega} Ωf(P)dΩ<Ωg(P)dΩ
绝对值不等式 ∣ ∫ Ω f ( P ) d Ω ∣ ≤ ∫ Ω ∣ f ( P ) ∣ d Ω \left|\displaystyle\int_{\Omega}{f(P)\mathrm{d}\Omega}\right| \leq \displaystyle\int_{\Omega}{|f(P)|\mathrm{d}\Omega} Ωf(P)dΩΩf(P)dΩ
点函数积分中值定理 若 f ( P ) f(P) f(P) 在有界闭区域 Ω \Omega Ω 上连续,则至少存在一点 P ∗ ∈ Ω P^* \in \Omega PΩ,使得 ∫ Ω f ( P ) d Ω = f ( P ∗ ) Ω \displaystyle\int_{\Omega}{f(P)\mathrm{d}\Omega}=f(P^*)\Omega Ωf(P)dΩ=f(P)Ω,其中 f ( P ∗ ) = 1 Ω ∫ Ω f ( P ) d Ω f(P^*)=\dfrac1\Omega\displaystyle\int_{\Omega}{f(P)\mathrm{d}\Omega} f(P)=Ω1Ωf(P)dΩ 称为 f ( P ) f(P) f(P) Ω \Omega Ω 上的平均值。
推论 若 m ≤ f ( P ) ≤ M m \leq f(P) \leq M mf(P)M,则 m Ω ≤ ∫ Ω f ( P ) d Ω ≤ M Ω m\Omega \leq \displaystyle\int_{\Omega}{f(P)\mathrm{d}\Omega} \leq M\Omega mΩΩf(P)dΩMΩ
点函数的分类
(1) Ω = [ a , b ] ⊂ R \Omega=[a,b] \subset \mathbb{R} Ω=[a,b]R,此时 f ( P ) = f ( x ) f(P)=f(x) f(P)=f(x),则 ∫ Ω f ( P ) d Ω = ∫ a b f ( x ) d x \displaystyle\int_{\Omega}{f(P)\mathrm{d}\Omega}=\displaystyle\int_a^b{f(x)\mathrm{d}x} Ωf(P)dΩ=abf(x)dx(一元函数定积分);
(2) Ω = s ⊂ R 2 \Omega=s \subset \mathbb{R}^2 Ω=sR2 s s s 是平面曲线,此时 f ( P ) = f ( x , y ) f(P)=f(x,y) f(P)=f(x,y),则 ∫ Ω f ( P ) d Ω = ∫ s f ( x , y ) d s \displaystyle\int_{\Omega}{f(P)\mathrm{d}\Omega}=\displaystyle\int_s{f(x,y)\mathrm{d}s} Ωf(P)dΩ=sf(x,y)ds(平面弧长积分);
(3) Ω = s ⊂ R 3 \Omega=s \subset \mathbb{R}^3 Ω=sR3 s s s 是空间曲线,此时 f ( P ) = f ( x , y , z ) f(P)=f(x,y,z) f(P)=f(x,y,z),则 ∫ Ω f ( P ) d Ω = ∫ s f ( x , y , z ) d s \displaystyle\int_{\Omega}{f(P)\mathrm{d}\Omega}=\displaystyle\int_s{f(x,y,z)\mathrm{d}s} Ωf(P)dΩ=sf(x,y,z)ds(空间弧长积分);
(4) Ω = σ ⊂ R 2 \Omega=\sigma \subset \mathbb{R}^2 Ω=σR2 σ \sigma σ 是平面区域,此时 f ( P ) = f ( x , y ) f(P)=f(x,y) f(P)=f(x,y),则 ∫ Ω f ( P ) d Ω = ∬ σ f ( x , y ) d σ \displaystyle\int_{\Omega}{f(P)\mathrm{d}\Omega}=\displaystyle\iint_\sigma{f(x,y)\mathrm{d}\sigma} Ωf(P)dΩ=σf(x,y)dσ(二重积分);
(5) Ω = S ⊂ R 3 \Omega=S \subset \mathbb{R}^3 Ω=SR3 S S S 是空间曲面,此时 f ( P ) = f ( x , y , z ) f(P)=f(x,y,z) f(P)=f(x,y,z),则 ∫ Ω f ( P ) d Ω = ∬ S f ( x , y , z ) d S \displaystyle\int_{\Omega}{f(P)\mathrm{d}\Omega}=\displaystyle\iint_S{f(x,y,z)\mathrm{d}S} Ωf(P)dΩ=Sf(x,y,z)dS(第一类曲面积分);
(6) Ω = V ⊂ R 3 \Omega=V \subset \mathbb{R}^3 Ω=VR3 V V V 是空间立体,此时 f ( P ) = f ( x , y , z ) f(P)=f(x,y,z) f(P)=f(x,y,z),则 ∫ Ω f ( P ) d Ω = ∭ V f ( x , y , z ) d V \displaystyle\int_{\Omega}{f(P)\mathrm{d}\Omega}=\displaystyle\iiint_V{f(x,y,z)\mathrm{d}V} Ωf(P)dΩ=Vf(x,y,z)dV(三重积分)。
重心 { x ˉ = 1 M ∫ Ω μ ( P ) x d Ω y ˉ = 1 M ∫ Ω μ ( P ) y d Ω z ˉ = 1 M ∫ Ω μ ( P ) z d Ω \begin{cases}\bar{x}=\dfrac1M\displaystyle\int_{\Omega}{\mu(P)x\mathrm{d}\Omega} \\ \bar{y}=\dfrac1M\displaystyle\int_{\Omega}{\mu(P)y\mathrm{d}\Omega} \\ \bar{z}=\dfrac1M\displaystyle\int_{\Omega}{\mu(P)z\mathrm{d}\Omega}\end{cases} xˉ=M1Ωμ(P)xdΩyˉ=M1Ωμ(P)ydΩzˉ=M1Ωμ(P)zdΩ
转动惯量(1) Ω ⊂ R 3 ⟹ { I z = ∫ Ω ( x 2 + y 2 ) μ ( P ) d Ω I y = ∫ Ω ( z 2 + x 2 ) μ ( P ) d Ω I x = ∫ Ω ( y 2 + z 2 ) μ ( P ) d Ω \Omega \subset \mathbb{R}^3 \Longrightarrow \begin{cases}I_z=\displaystyle\int_{\Omega}{(x^2+y^2)\mu(P)\mathrm{d}\Omega} \\ I_y=\displaystyle\int_{\Omega}{(z^2+x^2)\mu(P)\mathrm{d}\Omega} \\ I_x=\displaystyle\int_{\Omega}{(y^2+z^2)\mu(P)\mathrm{d}\Omega}\end{cases} ΩR3Iz=Ω(x2+y2)μ(P)dΩIy=Ω(z2+x2)μ(P)dΩIx=Ω(y2+z2)μ(P)dΩ (2) Ω ⊂ R 2 ⟹ { I x = ∫ Ω y 2 μ ( P ) d Ω I y = ∫ Ω x 2 μ ( P ) d Ω \Omega \subset \mathbb{R}^2 \Longrightarrow \begin{cases}I_x=\displaystyle\int_{\Omega}{y^2\mu(P)\mathrm{d}\Omega} \\ I_y=\displaystyle\int_{\Omega}{x^2\mu(P)\mathrm{d}\Omega}\end{cases} ΩR2Ix=Ωy2μ(P)dΩIy=Ωx2μ(P)dΩ
引力 { F x = k m ∫ Ω μ ( P ) ( x − x 0 ) r 3 d Ω F y = k m ∫ Ω μ ( P ) ( y − y 0 ) r 3 d Ω F z = k m ∫ Ω μ ( P ) ( z − z 0 ) r 3 d Ω   ,   r = ( x − x 0 ) 2 + ( y − y 0 ) 2 + ( z − z 0 ) 2 \begin{cases}F_x=km\displaystyle\int_{\Omega}{\dfrac{\mu(P)(x-x_0)}{r^3}\mathrm{d}\Omega} \\ F_y=km\displaystyle\int_{\Omega}{\dfrac{\mu(P)(y-y_0)}{r^3}\mathrm{d}\Omega} \\ F_z=km\displaystyle\int_{\Omega}{\dfrac{\mu(P)(z-z_0)}{r^3}\mathrm{d}\Omega}\end{cases} \ , \ r=\sqrt{(x-x_0)^2+(y-y_0)^2+(z-z_0)^2} Fx=kmΩr3μ(P)(xx0)dΩFy=kmΩr3μ(P)(yy0)dΩFz=kmΩr3μ(P)(zz0)dΩ , r=(xx0)2+(yy0)2+(zz0)2

  • 0
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值