极坐标计算重积分交换积分次序

1.极坐标计算重积分交换积分次序

2.1.类直角坐标法

将极坐标 ( θ , ρ ) (\theta, \rho) (θ,ρ)看做类似直角坐标 ( x , y ) (x,y) (x,y)的情况,将 θ \theta θ看做横坐标,讲 ρ \rho ρ看做纵轴,画出 ( θ , ρ ) (\theta, \rho) (θ,ρ)的直角坐标图和积分区域图形,然后像直角坐标下交换积分次序那样交换 θ , ρ \theta, \rho θ,ρ的积分次序

例一:在极坐标下交换积分次序: I = ∫ − π 4 π 2 d θ ∫ 0 2 cos ⁡ θ f ( r cos ⁡ θ , r sin ⁡ θ ) r d r I=\int_{-\frac{\pi}{4}}^{\frac{\pi}{2}} d \theta \int_{0}^{2 \cos \theta} f(r \cos \theta, r \sin \theta) r d r I=4π2πdθ02cosθf(rcosθ,rsinθ)rdr

解析方法一:以 θ \theta θ为横轴, r r r为纵轴,画出积分区域的几何图形

积分区域 D : − π 4 ≤ θ ≤ π 2 , 0 ≤ r ≤ 2 cos ⁡ θ D:-\frac{\pi}{4} \leq \theta \leq \frac{\pi}{2}, 0 \leq r \leq 2 \cos \theta D:4πθ2π,0r2cosθ,将 D D D分成两部分: D 1 , D 2 D_{1}, D_{2} D1,D2。其中 D 1 : 0 ≤ r ≤ 2 , − π 4 ≤ θ ≤ arccos ⁡ r 2 D_{1}: 0 \leq r \leq \sqrt{2},-\frac{\pi}{4} \leq \theta \leq \arccos \frac{r}{2} D1:0r2 ,4πθarccos2r,其中 θ ≤ arccos ⁡ r 2 \theta \leq \arccos \frac{r}{2} θarccos2r是根据 r ≤ 2 cos ⁡ θ ⇒ cos ⁡ θ ≥ r 2 r \leq 2 \cos \theta \Rightarrow \cos \theta \geq \frac{r}{2} r2cosθcosθ2r ⇒ θ ≤ arccos ⁡ r 2 \Rightarrow \theta \leq \arccos \frac{r}{2} θarccos2r得到。

D 2 : 2 < r ≤ 2 , − arccos ⁡ r 2 ≤ θ ≤ arccos ⁡ r 2 D_{2}: \sqrt{2}<r \leq 2,-\arccos \frac{r}{2} \leq \theta \leq \arccos \frac{r}{2} D2:2 <r2,arccos2rθarccos2r,其中 − arccos ⁡ r 2 ≤ θ ≤ arccos ⁡ r 2 -\arccos \frac{r}{2} \leq \theta \leq \arccos \frac{r}{2} arccos2rθarccos2r是根据 r ≤ 2 cos ⁡ θ , cos ⁡ θ ≥ r 2 , − arccos ⁡ r 2 ≤ θ ≤ arccos ⁡ r 2 r \leq 2 \cos \theta, \cos \theta \geq \frac{r}{2},-\arccos \frac{r}{2} \leq \theta \leq \arccos \frac{r}{2} r2cosθ,cosθ2r,arccos2rθarccos2r得到,从图形上看, θ \theta θ是从左边曲线 θ = − arccos ⁡ r 2 \theta=-\arccos \frac{r}{2} θ=arccos2r变到右边曲线 θ = arccos ⁡ r 2 \theta=\arccos \frac{r}{2} θ=arccos2r

根据上面积分区域的划分可得:

I = ∬ D f ( rcos ⁡ θ , rsin ⁡ θ ) r d r d θ = ∬ D f ( rcos ⁡ θ , rsin ⁡ θ ) r d r d θ + ∬ D f ( rcos ⁡ θ , r sin ⁡ θ ) r d r d θ = = ∫ 0 2 d r ∫ − π 4 arccos ⁡ r 2 f ( rcos ⁡ θ , rsin ⁡ θ ) r d θ + ∫ 2 2 d r ∫ − arccos ⁡ r 2 arccos ⁡ r 2 f ( rcos ⁡ θ , rsin ⁡ θ ) r d θ \begin{array}{l} I=\iint_{D} f(\operatorname{rcos} \theta, \operatorname{rsin} \theta) r d r d \theta=\iint_{D} f(\operatorname{rcos} \theta, \operatorname{rsin} \theta) r d r d \theta+\iint_{D} f(\operatorname{rcos} \theta, r \sin \theta) r d r d \theta= \\ =\int_{0}^{\sqrt{2}} d r \int_{-\frac{\pi}{4}}^{\arccos \frac{r}{2}} f(\operatorname{rcos} \theta, \operatorname{rsin} \theta) r d \theta+\int_{\sqrt{2}}^{2} d r \int_{-\arccos \frac{r}{2}}^{ \arccos \frac{r}{2}} f(\operatorname{rcos} \theta, \operatorname{rsin} \theta) r d \theta \end{array} I=Df(rcosθ,rsinθ)rdrdθ=Df(rcosθ,rsinθ)rdrdθ+Df(rcosθ,rsinθ)rdrdθ==02 dr4πarccos2rf(rcosθ,rsinθ)rdθ+2 2drarccos2rarccos2rf(rcosθ,rsinθ)rdθ

2.2.极坐标常数穿越法

若先积 θ \theta θ(内层积分),后积 ρ \rho ρ(外层积分),则先确定 ρ \rho ρ的取值范围(上下限),然后用 ρ = \rho= ρ=常数穿过区域 D D D,将 D D D划分为两个子区域 D 1 D_1 D1 D 2 D_2 D2.

0 ≤ r ≤ 2 0 \leq r \leq \sqrt{2} 0r2 时,圆弧 r = r= r=常数从 θ = − π 4 \theta=-\frac{\pi}{4} θ=4π进入区域 D D D,从 r = 2 cos ⁡ θ ( θ > 0 ) r=2 \cos \theta(\theta>0) r=2cosθ(θ>0)(即 θ = arccos ⁡ r 2 \theta=\arccos \frac{r}{2} θ=arccos2r)穿出区域 D D D

2 ≤ r ≤ 2 \sqrt{2} \leq r \leq 2 2 r2时,圆弧 r = r= r=常数从 r = 2 cos ⁡ θ ( θ < 0 ) r=2 \cos \theta(\theta<0) r=2cosθ(θ<0),即 θ = − arccos ⁡ r 2 \theta=-\arccos \frac{r}{2} θ=arccos2r进入区域 D D D,从 r = 2 cos ⁡ θ ( θ > 0 ) r=2 \cos \theta(\theta>0) r=2cosθ(θ>0)(即 θ = arccos ⁡ r 2 \theta=\arccos \frac{r}{2} θ=arccos2r)穿出区域 D D D

因此

∫ − π 4 π 2 d θ ∫ 0 2 cos ⁡ θ r f ( r , θ ) d r = ∫ 0 2 d r ∫ − π 4 arccos ⁡ r 2 r f ( r , θ ) d θ + ∫ 2 2 d r ∫ − arccos ⁡ r 2 arccos ⁡ r 2 r f ( r , θ ) d θ \int_{-\frac{\pi}{4}}^{\frac{\pi}{2}} \mathrm{d} \theta \int_{0}^{2 \cos \theta} r f(r, \theta) \mathrm{d} r=\int_{0}^{\sqrt{2}} \mathrm{d} r \int_{-\frac{\pi}{4}}^{\arccos \frac{r}{2}} r f(r, \theta) \mathrm{d} \theta+\int_{\sqrt{2}}^{2} \mathrm{d} r \int_{-\arccos \frac{r}{2}}^{\arccos \frac{r}{2}} r f(r, \theta) \mathrm{d} \theta 4π2πdθ02cosθrf(r,θ)dr=02 dr4πarccos2rrf(r,θ)dθ+2 2drarccos2rarccos2rrf(r,θ)dθ

  • 4
    点赞
  • 37
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值