Newton's method and Quasi Newton method牛顿法与拟牛顿法

Welcome To My Blog
牛顿法和拟牛顿法是求解无约束最优化问题的常用方法,优点是收敛速度快.
牛顿法是迭代算法,每一步需要求解目标函数的Hessian矩阵的逆矩阵,矩阵的逆运算很耗时.
拟牛顿法通过正定矩阵近似Hessian矩阵的逆矩阵或Hessian矩阵,简化Hessian矩阵的求逆计算过程

采用线搜索框架

1.png
搜索方向由牛顿法或拟牛顿法给出,步长可以通过精确线搜索或非精确线搜索获得
关于步长,之前的文章有提过:Line search and Step length线搜索与步长

牛顿法

  1. 假设f(x)具有二阶连续偏导数.要求解的无约束最优化问题是min f(x),x*标识目标函数f(x)的极小点.
  2. 若第k次迭代值为x^(k),则可将f(x)在x^(k)附近进行二阶泰勒展开(Taylor expansion):
    2.png

    • 函数f(x)有极值的必要条件是在极值点处一阶导数
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值