Welcome To My Blog
牛顿法和拟牛顿法是求解无约束最优化问题的常用方法,优点是收敛速度快.
牛顿法是迭代算法,每一步需要求解目标函数的Hessian矩阵的逆矩阵,矩阵的逆运算很耗时.
拟牛顿法通过正定矩阵近似Hessian矩阵的逆矩阵或Hessian矩阵,简化Hessian矩阵的求逆计算过程
采用线搜索框架
搜索方向由牛顿法或拟牛顿法给出,步长可以通过精确线搜索或非精确线搜索获得
关于步长,之前的文章有提过:Line search and Step length线搜索与步长
牛顿法
- 假设f(x)具有二阶连续偏导数.要求解的无约束最优化问题是min f(x),x*标识目标函数f(x)的极小点.
- 若第k次迭代值为x^(k),则可将f(x)在x^(k)附近进行二阶泰勒展开(Taylor expansion):
-
- 函数f(x)有极值的必要条件是在极值点处一阶导数