目录
- 引言:当 Low-Code 遇见 RAG,你的专属 AI 职业规划师诞生了
- 核心理念:为什么选择 RAG + Low-Code?
- 揭秘技术栈:构建智能大脑的积木
- 系统蓝图:深入理解架构与数据流
- 核心工作流:从用户提问到 AI 回答
- 第一步:数据是燃料 - 爬取与向量化
- 第二步:搭建骨架 - Bubble 后端与 API 集成
- 第三步:赋予灵魂 - Bubble 前端与动态交互
- 整合与部署:让 AI 规划师动起来
- 未来展望:不止于此的智能
- 结语
引言:当 Low-Code 遇见 RAG,你的专属 AI 职业规划师诞生了
在信息爆炸的时代,职业选择和发展路径变得空前复杂。海量的招聘信息、层出不穷的新兴行业、不断变化的技能需求. 如果有一个 7x24 小时在线、懂你、还能结合最新市场信息为你量身定制建议的职业规划师,会是怎样的体验?
今天,我们将一起探索如何利用 Low-Code 平台 Bubble.io,结合强大的 RAG (Retrieval-Augmented Generation) 技术、向量数据库 Pinecone 和大语言模型 Deepseek,从零开始构建一个智能职业规划聊天机器人。这不仅仅是一个技术教程,更是一次将前沿 AI 能力与高效开发工具相结合的实践,让你亲手打造属于自己的 AI 应用。
核心理念:为什么选择 RAG + Low-Code?
传统的聊天机器人要么依赖预设脚本,要么仅凭 LLM 的内部知识(可能过时或泛化),难以提供针对性强、基于最新信息的专业建议。而 RAG 技术彻底改变了这一点。
-
RAG (Retrieval-Augmented Generation): 简单来说,RAG 就像给大模型(如 Deepseek)配备了一个强大的外部“大脑”和“搜索引擎”。当用户提问时,系统首先从我们准备好的专业知识库(存储在 Pinecone 向量数据库中的招聘信息、职业规划文章等)中检索最相关的信息片段,然后将这些信息连同用户的问题一起交给 LLM,让它基于这些“新鲜出炉”的资料生成更精准、更可靠的回答。这就像开卷考试,大大提高了回答的专业度和时效性。
-
Low-Code (Bubble.io): Bubble 让我们能够通过可视化界面快速构建复杂的前后端逻辑、数据库和用户界面,而无需编写大量传统代码。它负责处理用户交互、存储用户画像、管理工作流,并作为“胶水”连接 RAG 所需的外部 API(Pinecone, Deepseek)。这极大地降低了开发门槛,让我们能更专注于 AI 核心逻辑的实现。
这种组合让我们既能利用 RAG 的强大能力,又能享受 Low-Code 的开发效率。
揭秘技术栈:构建智能大脑的积木
要构建我们的 AI 职业规划师,我们需要一套精心挑选的工具:
- 前端 & 基础后端: Bubble.io - 我们的核心开发平台,负责 UI、用户数据库、工作流和 API 调用。
- 向量数据库: Pinecone - 存储和高效检索大量职业信息、规划资料的“记忆库”。文本数据在这里被转换成向量(嵌入),方便进行语义相似度搜索。
- 大型语言模型 (LLM): Deepseek - 智能的“大脑”,负责理解用户意图,并结合从 Pinecone 检索到的上下文信息,生成流畅、专业的对话。
- 数据抓取 & 处理: Python (使用 Scrapy, BeautifulSoup 等库) + Embedding Model (如 Sentence Transformers 或 Deepseek Embedding API) - 在 Bubble 之外运行,负责从网络抓取原始数据,将其处理、切块,并使用嵌入模型转换为向量,最后存入 Pinecone。这是 RAG 的数据基础。
系统蓝图:深入理解架构与数据流
为了更清晰地理解各组件如何协同工作,我们来看一下系统架构图: