【高等数学基础进阶】函数、极限、连续-极限-part1

一、极限的概念

1. 数列的极限

定义1: lim ⁡ n → ∞ x n = A \lim\limits_{n\to \infty}x_{n}=A nlimxn=A
∀ ϵ > 0 , ∃ N > 0 \forall \epsilon>0,\exists N>0 ϵ>0,N>0,当 n > N n>N n>N时,恒有 ∣ x n − A ∣ < ϵ |x_{n}-A|<\epsilon xnA<ϵ
注:

  1. ϵ \epsilon ϵ N N N的作用:
    ϵ \epsilon ϵ刻画数列的项 x n x_{n} xn与常数 A A A的接近程度
    N N N刻画 n n n趋向于 ∞ \infty 的过程
  2. 几何意义: ∀ ϵ > 0 , ∃ N > 0 \forall \epsilon>0,\exists N>0 ϵ>0,N>0,当 n > N n>N n>N时,所有 x n x_{n} xn都落在 ( A − ϵ , A + ϵ ) (A-\epsilon,A+\epsilon) (Aϵ,A+ϵ)
  3. 数列 { x n } \{x_{n}\} { xn}的极限与前有限项无关。例如,单调有界准则可以只对于后无穷多项,而前有限项可以不单调
  4. lim ⁡ n → ∞ x n = a ⇔ lim ⁡ k → ∞ x 2 k − 1 = lim ⁡ k → ∞ x 2 k = a \lim\limits_{n\to \infty}x_{n}=a\Leftrightarrow\lim\limits_{k\to \infty}x_{2k-1}=\lim\limits_{k\to \infty}x_{2k}=a nlimxn=aklimx2k1=klimx2k=a

例1: lim ⁡ n → ∞ ( n + 1 n ) ( − 1 ) n = \lim\limits_{n\to \infty}( \frac{n+1}{n})^{(-1)^{n}}= nlim(nn+1)(1)n=()

用奇偶项
n n n为奇数时
x n = ( n + 1 n ) − 1 x_{n}=(\frac{n+1}{n})^{-1} xn=(nn+1)1
lim ⁡ n → ∞ x n = lim ⁡ n → ∞ ( n + 1 n ) − 1 = 1 \lim\limits_{n \to \infty}x_{n}=\lim\limits_{n \to \infty}( \frac{n+1}{n})^{-1}=1 nlimxn=nlim(nn+1)1=1
n n n为偶数时
x n = ( n + 1 n ) x_{n}=(\frac{n+1}{n}) xn=(nn+1)
lim ⁡ n → ∞ x n = lim ⁡ n → ∞ ( n + 1 n ) = 1 \lim\limits_{n \to \infty}x_{n}=\lim\limits_{n \to \infty}( \frac{n+1}{n})=1 nlimxn=nlim(nn+1)=1
lim ⁡ n → ∞ x n = lim ⁡ n → ∞ ( n + 1 n ) ( − 1 ) n = 1 \lim\limits_{n \to \infty}x_{n}=\lim\limits_{n\to \infty}( \frac{n+1}{n})^{(-1)^{n}}=1 nlimxn=nlim(nn+1)(1)n=1

也可以夹逼
( n + 1 n ) − 1 ≤ ( n + 1 n ) ( − 1 ) n ≤ n + 1 n (\frac{n+1}{n})^{-1}\leq(\frac{n+1}{n})^{(-1)^{n}}\leq \frac{n+1}{n} (nn+1)1(nn+1)(1)nnn+1
由于
lim ⁡ n → ∞ ( n + 1 n ) − 1 = 1 , lim ⁡ n → ∞ n + 1 n = 1 \lim\limits_{n \to \infty}(\frac{n+1}{n})^{-1}=1,\lim\limits_{n \to \infty}\frac{n+1}{n}=1 nlim(nn+1)1=1,nlimnn+1=1

lim ⁡ n → ∞ ( n + 1 n ) ( − 1 ) n = 1 \lim\limits_{n\to \infty}( \frac{n+1}{n})^{(-1)^{n}}=1 nlim(nn+1)(1)n=1

例2:试证明
lim ⁡ n → ∞ x n = a \lim\limits_{n\to \infty}x_{n}=a nlimxn=a,则 lim ⁡ n → ∞ ∣ x n ∣ = ∣ a ∣ \lim\limits_{n\to \infty}|x_{n}|=|a| nlimxn=a,但反之不成立
证:
lim ⁡ n → ∞ x n = a ⇒ ∀ ϵ > 0 , ∃ N > 0 , 当 n > N , ∣ x n − a ∣ < ϵ \lim\limits_{n\to \infty}x_{n}=a\Rightarrow\forall \epsilon>0,\exists N>0,\text{当}n>N,|x_{n}-a|<\epsilon nlimxn=aϵ>0,N>0,n>N,xna<ϵ
要证
∀ ϵ > 0 , ∃ N > 0 , 当 n > N , ∣ ∣ x n ∣ − ∣ a ∣ ∣ < ϵ \forall \epsilon>0,\exists N>0,\text{当}n>N,||x_{n}|-|a||<\epsilon ϵ>0,N>0,n>N,∣∣xna∣∣<ϵ
又因为
∣ ∣ a ∣ − ∣ b ∣ ∣ ≤ ∣ a − b ∣ ||a|-|b||\leq|a-b| ∣∣ab∣∣ab
∣ ∣ x n ∣ − ∣ a ∣ ∣ ≤ ∣ x n − a ∣ ||x_{n}|-|a||\leq|x_{n}-a| ∣∣xna∣∣xna
得证

反之不成立,反例 x n = ( − 1 ) n x_{n}=(-1)^{n} xn=(1)n

推广: lim ⁡ n → ∞ x n = 0 \lim\limits_{n\to \infty}x_{n}=0 nlimxn=0的充分必要条件是 lim ⁡ n → ∞ ∣ x n ∣ = 0 \lim\limits_{n\to \infty}|x_{n}|=0 nlimxn=0

2. 函数的极限

a. 自变量趋于无穷大时函数的极限

定义2:
lim ⁡ x → + ∞ f ( x ) = A \lim\limits_{x\to+\infty}f(x)=A x+limf(x)=A
∀ ϵ > 0 , ∃ X > 0 \forall \epsilon>0,\exists X>0 ϵ>0,X>0,当 x > X x>X x>X时,恒有 ∣ f ( x ) − A ∣ < ϵ |f(x)-A|<\epsilon f(x)A<ϵ
定义3:
lim ⁡ x → − ∞ f ( x ) = A \lim\limits_{x\to-\infty}f(x)=A xlimf(x)=A
∀ ϵ > 0 , ∃ X > 0 \forall \epsilon>0,\exists X>0 ϵ>0,X>0,当 x < − X x<-X x<X时,恒有 ∣ f ( x ) − A ∣ < ϵ |f(x)-A|<\epsilon f(x)A<ϵ
定义4:
lim ⁡ x → ∞ f ( x ) = A \lim\limits_{x\to\infty}f(x)=A xlimf(x)=A
∀ ϵ > 0 , ∃ X > 0 \forall \epsilon>0,\exists X>0 ϵ>0,X>0,当 x > ∣ X ∣ x>|X| x>X时,恒有 ∣ f ( x ) − A ∣ < ϵ |f(x)-A|<\epsilon f(x)A<ϵ

注意: n → ∞ ⇔ n → + ∞ ; x →

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值