【高等数学基础进阶】函数、极限、连续-极限-part1

一、极限的概念

1. 数列的极限

定义1: lim ⁡ n → ∞ x n = A \lim\limits_{n\to \infty}x_{n}=A nlimxn=A
∀ ϵ > 0 , ∃ N > 0 \forall \epsilon>0,\exists N>0 ϵ>0,N>0,当 n > N n>N n>N时,恒有 ∣ x n − A ∣ < ϵ |x_{n}-A|<\epsilon xnA<ϵ
注:

  1. ϵ \epsilon ϵ N N N的作用:
    ϵ \epsilon ϵ刻画数列的项 x n x_{n} xn与常数 A A A的接近程度
    N N N刻画 n n n趋向于 ∞ \infty 的过程
  2. 几何意义: ∀ ϵ > 0 , ∃ N > 0 \forall \epsilon>0,\exists N>0 ϵ>0,N>0,当 n > N n>N n>N时,所有 x n x_{n} xn都落在 ( A − ϵ , A + ϵ ) (A-\epsilon,A+\epsilon) (Aϵ,A+ϵ)
  3. 数列 { x n } \{x_{n}\} {xn}的极限与前有限项无关。例如,单调有界准则可以只对于后无穷多项,而前有限项可以不单调
  4. lim ⁡ n → ∞ x n = a ⇔ lim ⁡ k → ∞ x 2 k − 1 = lim ⁡ k → ∞ x 2 k = a \lim\limits_{n\to \infty}x_{n}=a\Leftrightarrow\lim\limits_{k\to \infty}x_{2k-1}=\lim\limits_{k\to \infty}x_{2k}=a nlimxn=aklimx2k1=klimx2k=a

例1: lim ⁡ n → ∞ ( n + 1 n ) ( − 1 ) n = \lim\limits_{n\to \infty}( \frac{n+1}{n})^{(-1)^{n}}= nlim(nn+1)(1)n=()

用奇偶项
n n n为奇数时
x n = ( n + 1 n ) − 1 x_{n}=(\frac{n+1}{n})^{-1} xn=(nn+1)1
lim ⁡ n → ∞ x n = lim ⁡ n → ∞ ( n + 1 n ) − 1 = 1 \lim\limits_{n \to \infty}x_{n}=\lim\limits_{n \to \infty}( \frac{n+1}{n})^{-1}=1 nlimxn=nlim(nn+1)1=1
n n n为偶数时
x n = ( n + 1 n ) x_{n}=(\frac{n+1}{n}) xn=(nn+1)
lim ⁡ n → ∞ x n = lim ⁡ n → ∞ ( n + 1 n ) = 1 \lim\limits_{n \to \infty}x_{n}=\lim\limits_{n \to \infty}( \frac{n+1}{n})=1 nlimxn=nlim(nn+1)=1
lim ⁡ n → ∞ x n = lim ⁡ n → ∞ ( n + 1 n ) ( − 1 ) n = 1 \lim\limits_{n \to \infty}x_{n}=\lim\limits_{n\to \infty}( \frac{n+1}{n})^{(-1)^{n}}=1 nlimxn=nlim(nn+1)(1)n=1

也可以夹逼
( n + 1 n ) − 1 ≤ ( n + 1 n ) ( − 1 ) n ≤ n + 1 n (\frac{n+1}{n})^{-1}\leq(\frac{n+1}{n})^{(-1)^{n}}\leq \frac{n+1}{n} (nn+1)1(nn+1)(1)nnn+1
由于
lim ⁡ n → ∞ ( n + 1 n ) − 1 = 1 , lim ⁡ n → ∞ n + 1 n = 1 \lim\limits_{n \to \infty}(\frac{n+1}{n})^{-1}=1,\lim\limits_{n \to \infty}\frac{n+1}{n}=1 nlim(nn+1)1=1,nlimnn+1=1

lim ⁡ n → ∞ ( n + 1 n ) ( − 1 ) n = 1 \lim\limits_{n\to \infty}( \frac{n+1}{n})^{(-1)^{n}}=1 nlim(nn+1)(1)n=1

例2:试证明
lim ⁡ n → ∞ x n = a \lim\limits_{n\to \infty}x_{n}=a nlimxn=a,则 lim ⁡ n → ∞ ∣ x n ∣ = ∣ a ∣ \lim\limits_{n\to \infty}|x_{n}|=|a| nlimxn=a,但反之不成立
证:
lim ⁡ n → ∞ x n = a ⇒ ∀ ϵ > 0 , ∃ N > 0 , 当 n > N , ∣ x n − a ∣ < ϵ \lim\limits_{n\to \infty}x_{n}=a\Rightarrow\forall \epsilon>0,\exists N>0,\text{当}n>N,|x_{n}-a|<\epsilon nlimxn=aϵ>0,N>0,n>N,xna<ϵ
要证
∀ ϵ > 0 , ∃ N > 0 , 当 n > N , ∣ ∣ x n ∣ − ∣ a ∣ ∣ < ϵ \forall \epsilon>0,\exists N>0,\text{当}n>N,||x_{n}|-|a||<\epsilon ϵ>0,N>0,n>N,∣∣xna∣∣<ϵ
又因为
∣ ∣ a ∣ − ∣ b ∣ ∣ ≤ ∣ a − b ∣ ||a|-|b||\leq|a-b| ∣∣ab∣∣ab
∣ ∣ x n ∣ − ∣ a ∣ ∣ ≤ ∣ x n − a ∣ ||x_{n}|-|a||\leq|x_{n}-a| ∣∣xna∣∣xna
得证

反之不成立,反例 x n = ( − 1 ) n x_{n}=(-1)^{n} xn=(1)n

推广: lim ⁡ n → ∞ x n = 0 \lim\limits_{n\to \infty}x_{n}=0 nlimxn=0的充分必要条件是 lim ⁡ n → ∞ ∣ x n ∣ = 0 \lim\limits_{n\to \infty}|x_{n}|=0 nlimxn=0

2. 函数的极限

a. 自变量趋于无穷大时函数的极限

定义2:
lim ⁡ x → + ∞ f ( x ) = A \lim\limits_{x\to+\infty}f(x)=A x+limf(x)=A
∀ ϵ > 0 , ∃ X > 0 \forall \epsilon>0,\exists X>0 ϵ>0,X>0,当 x > X x>X x>X时,恒有 ∣ f ( x ) − A ∣ < ϵ |f(x)-A|<\epsilon f(x)A<ϵ
定义3:
lim ⁡ x → − ∞ f ( x ) = A \lim\limits_{x\to-\infty}f(x)=A xlimf(x)=A
∀ ϵ > 0 , ∃ X > 0 \forall \epsilon>0,\exists X>0 ϵ>0,X>0,当 x < − X x<-X x<X时,恒有 ∣ f ( x ) − A ∣ < ϵ |f(x)-A|<\epsilon f(x)A<ϵ
定义4:
lim ⁡ x → ∞ f ( x ) = A \lim\limits_{x\to\infty}f(x)=A xlimf(x)=A
∀ ϵ > 0 , ∃ X > 0 \forall \epsilon>0,\exists X>0 ϵ>0,X>0,当 x > ∣ X ∣ x>|X| x>X时,恒有 ∣ f ( x ) − A ∣ < ϵ |f(x)-A|<\epsilon f(x)A<ϵ

注意: n → ∞ ⇔ n → + ∞ ; x → ∞ ⇔ ∣ x ∣ → ∞ n\to \infty\Leftrightarrow n\to +\infty;x\to \infty\Leftrightarrow |x|\to \infty nn+;xx

定理1: lim ⁡ x → ∞ f ( x ) = A ⇔ lim ⁡ x → + ∞ f ( x ) = lim ⁡ x → − ∞ f ( x ) = A \lim\limits_{x\to\infty}f(x)=A\Leftrightarrow\lim\limits_{x\to+\infty}f(x)=\lim\limits_{x\to-\infty}f(x)=A xlimf(x)=Ax+limf(x)=xlimf(x)=A

例3:极限 lim ⁡ x → ∞ x 2 + 1 x = \lim\limits_{x\to \infty} \frac{\sqrt{x^{2}+1}}{x}= xlimxx2+1 =

lim ⁡ x → + ∞ x 1 + 1 x 2 x = 1 , lim ⁡ x → − ∞ ( − x ) 1 + 1 x 2 x = − 1 \lim\limits_{x\to+\infty} \frac{x \sqrt{1+\frac{1}{x^{2}}}}{x}=1,\lim\limits_{x\to-\infty} \frac{(-x) \sqrt{1+\frac{1}{x^{2}}}}{x}=-1 x+limxx1+x21 =1,xlimx(x)1+x21 =1

b. 自变量趋于有限值时函数的极限

定义5:
lim ⁡ x → x 0 f ( x ) = A \lim\limits_{x\to x_{0}}f(x)=A xx0limf(x)=A
∀ ϵ > 0 , ∃ δ > 0 \forall \epsilon>0,\exists \delta>0 ϵ>0,δ>0,当 0 < ∣ x − x 0 ∣ < δ 0<|x-x_{0}|<\delta 0<xx0<δ时,恒有 ∣ f ( x ) − A ∣ < ϵ |f(x)-A|<\epsilon f(x)A<ϵ

注:

  1. ϵ \epsilon ϵ的任意性, ϵ \epsilon ϵ δ \delta δ的作用

  2. 几何意义: ∀ ϵ > 0 , ∃ δ > 0 \forall \epsilon>0,\exists \delta>0 ϵ>0,δ>0,当 0 < ∣ x − x 0 ∣ < δ 0<|x-x_{0}|<\delta 0<xx0<δ时,函数值 f ( x ) f(x) f(x)落在 A − ϵ A-\epsilon Aϵ A + ϵ A+\epsilon A+ϵ两条直线之间
    ![[附件/Pasted image 20220809144110.png|300]]

  3. x → x 0 x\to x_{0} xx0,但 x ≠ x 0 x\ne x_{0} x=x0
    注意定义
    0 < ∣ x − x 0 ∣ < δ 0<|x-x_{0}|<\delta 0<xx0<δ,左边说明不能等于 0 0 0,因此 x → x 0 x\to x_{0} xx0,但 x ≠ x 0 x\ne x_{0} x=x0这一点可以有定义也可以没定义,有定义函数值也可以不落在 U ( A , ϵ ) U(A,\epsilon) U(A,ϵ)
    ∣ f ( x ) − A ∣ < ϵ |f(x)-A|<\epsilon f(x)A<ϵ,左边没有限制,所以 f ( x ) → A f(x)\to A f(x)A,可以 f ( x ) = A f(x)=A f(x)=A
    对于
    lim ⁡ x → 0 sin ⁡ x x = 1 \lim\limits_{x\to 0} \frac{\sin x}{x}=1 x0limxsinx=1

    lim ⁡ x → 0 sin ⁡ ( x sin ⁡ 1 x ) x sin ⁡ 1 x ≠ 0 \lim\limits_{x\to 0} \frac{\sin(x\sin\frac{1}{x})}{x\sin\frac{1}{x}}\ne0 x0limxsinx1sin(xsinx1)=0
    虽然 x sin ⁡ 1 x → 0 x\sin\frac{1}{x}\to0 xsinx10,但不满足 x sin ⁡ 1 x ≠ 0 x\sin \frac{1}{x}\ne0 xsinx1=0,当 x = 1 n π → 0 x=\frac{1}{n\pi}\to0 x=10时,分母等于 0 0 0
    其次,如果一个函数在 x 0 x_{0} x0处有极限, x 0 x_{0} x0处可以没有定义,但要满足在其去心邻域必须处处有定义。对于本题,无论去心邻域再小,都有使得分母为 0 0 0的点,分式无意义,该极限不存在。

左极限:
lim ⁡ x → x 0 − f ( x ) = f ( x 0 − ) = f ( x 0 − 0 ) \lim\limits_{x\to x_{0}^{-}}f(x)=f(x_{0}^{-})=f(x_{0}-0) xx0limf(x)=f(x0)=f(x00)
右极限:
lim ⁡ x → x 0 + f ( x ) = f ( x 0 + ) = f ( x 0 + 0 ) \lim\limits_{x\to x_{0}^{+}}f(x)=f(x_{0}^{+})=f(x_{0}+0) xx0+limf(x)=f(x0+)=f(x0+0)

定理2:
lim ⁡ x → x 0 f ( x ) = A ⇔ lim ⁡ x → x 0 − f ( x ) = lim ⁡ x → x 0 + f ( x ) = A \lim\limits_{x\to x_{0}}f(x)=A\Leftrightarrow\lim\limits_{x\to x_{0}^{-}}f(x)=\lim\limits_{x\to x_{0}^{+}}f(x)=A xx0limf(x)=Axx0limf(x)=xx0+limf(x)=A

需要分左、右极限求极限的问题主要分三种:

  • 分段函数在分界点处的极限(在该分界点两侧函数表达式不同)
  • e ∞ e^{\infty} e型极限(如 lim ⁡ x → 0 e 1 x , lim ⁡ x → ∞ e x , lim ⁡ x → ∞ e − x \lim\limits_{x\to0}e^{\frac{1}{x}},\lim\limits_{x\to \infty}e^{x},\lim\limits_{x\to \infty}e^{-x} x0limex1,xlimex,xlimex
  • arctan ⁡ ∞ \arctan \infty arctan型极限(如 lim ⁡ x → 0 arctan ⁡ 1 x , lim ⁡ x → ∞ arctan ⁡ x \lim\limits_{x\to0}\arctan \frac{1}{x},\lim\limits_{x\to \infty}\arctan x x0limarctanx1,xlimarctanx

例4:当 x → 1 x\to1 x1时,函数 x 2 − 1 x − 1 e 1 x − 1 \frac{x^{2}-1}{x-1}{e^\frac{1}{x-1}} x1x21ex11的极限为()

本题出现 e ∞ e^{\infty} e,所以要分左、右极限
lim ⁡ x → 1 − x 2 − 1 x − 1 e 1 x − 1 = lim ⁡ x → 1 − x + 1 1 e 1 x − 1 = 2 × 0 = 0 \lim\limits_{x\to1^{-}}\frac{x^{2}-1}{x-1}{e^\frac{1}{x-1}}=\lim\limits_{x\to1^{-}}\frac{x+1}{1}{e^\frac{1}{x-1}}=2\times0=0 x1limx1x21ex11=x1lim1x+1ex11=2×0=0
lim ⁡ x → 1 + x 2 − 1 x − 1 e 1 x − 1 = lim ⁡ x → 1 + x + 1 1 e 1 x − 1 = + ∞ \lim\limits_{x\to1^{+}}\frac{x^{2}-1}{x-1}{e^\frac{1}{x-1}}=\lim\limits_{x\to1^{+}}\frac{x+1}{1}{e^\frac{1}{x-1}}=+\infty x1+limx1x21ex11=x1+lim1x+1ex11=+
显然不存在,且不为 ∞ \infty

二、极限性质

1. 有界性

  1. (数列)如果数列 { x n } \{x_{n}\} {xn}收敛,那么数列 { x n } \{x_{n}\} {xn}一定有界
    收敛一定有界,有界不一定收敛。 x n = ( − 1 ) n x_{n}=(-1)^{n} xn=(1)n
  2. (函数)若 lim ⁡ x → x 0 f ( x ) \lim\limits_{x\to x_{0}}f(x) xx0limf(x)存在,则 f ( x ) f(x) f(x) x 0 x_{0} x0某去心邻域有界(即局部有界)
    lim ⁡ x → x 0 f ( x ) \lim\limits_{x\to x_{0}}f(x) xx0limf(x)存在一定 f ( x ) f(x) f(x)局部有界, f ( x ) f(x) f(x)局部有界不一定 lim ⁡ x → x 0 f ( x ) \lim\limits_{x\to x_{0}}f(x) xx0limf(x)存在。 lim ⁡ x → 0 sin ⁡ 1 x \lim\limits_{x\to{0}}\sin \frac{1}{x} x0limsinx1有界,但极限不存在

以上都是对极限定义的进一步表述

2. 保号性

  1. (数列)设 lim ⁡ n → ∞ x n = A \lim\limits_{n\to \infty}x_{n}=A nlimxn=A
    1. 如果 A > 0 A>0 A>0(或 A < 0 A<0 A<0),则存在 N > 0 N>0 N>0,当 n > N n>N n>N时, x n > 0 x_{n}>0 xn>0(或 x n < 0 x_{n}<0 xn<0
      { A > 0 → x n > 0 A ≥ 0 ↛ x n ≥ 0 , 反例 x n = ( 1 − ) n n → 0 \begin{cases}A>0\rightarrow x_{n}>0\\A\geq0\nrightarrow x_{n}\geq0,\text{反例}x_{n}=\frac{(1-)^{n}}{n}\rightarrow0\end{cases} {A>0xn>0A0xn0,反例xn=n(1)n0
    2. 如果存在 N > 0 N>0 N>0,当 n > N n>N n>N时, x n ≥ 0 x_{n}\geq0 xn0(或 x n ≤ 0 x_{n}\leq0 xn0),则 A ≥ 0 A\geq0 A0(或 A ≤ 0 A\leq0 A0
      { x n ≥ 0 → A ≥ 0 x n > 0 → A ≥ 0 x n > 0 ↛ A > 0 , 反例 1 n → 0 \begin{cases}x_{n}\geq0\rightarrow A\geq0\\x_{n}>0\rightarrow A\geq0\\x_{n}>0\nrightarrow A>0,\text{反例}\frac{1}{n}\to0\end{cases} xn0A0xn>0A0xn>0A>0,反例n10
  2. (函数)设 lim ⁡ x → x 0 f ( x ) = A > 0 \lim\limits_{x\to x_{0}}f(x)=A>0 xx0limf(x)=A>0
    1. 如果 A > 0 A>0 A>0(或 A < 0 A<0 A<0),则存在 δ > 0 \delta>0 δ>0,当 x ∈ U ˚ ( x 0 , δ ) x\in \mathring U(x_{0},\delta) xU˚(x0,δ)时, f ( x ) > 0 f(x)>0 f(x)>0(或 f ( x ) < 0 f(x)<0 f(x)<0
    2. 如果存在 δ > 0 \delta>0 δ>0,当 x ∈ U ˚ ( x 0 , δ ) x\in\mathring{U}(x_{0},\delta) xU˚(x0,δ)时, f ( x ) ≥ 0 f(x)\geq0 f(x)0(或 f ( x ) ≤ 0 f(x)\leq0 f(x)0),那么 A ≥ 0 A\geq0 A0(或 A ≤ 0 A\leq0 A0

数列保充分大,函数保临近

例5:设 lim ⁡ x → a f ( x ) − f ( a ) ( x − a ) 2 = − 1 \lim\limits_{x\to a}\frac{f(x)-f(a)}{(x-a)^{2}}=-1 xalim(xa)2f(x)f(a)=1,则在点 x = a x=a x=a处取得极()值,f f ′ ( a ) = f'(a)= f(a)=()

lim ⁡ x → a f ( x ) − f ( a ) ( x − a ) 2 = − 1 < 0 \lim\limits_{x\to a}\frac{f(x)-f(a)}{(x-a)^{2}}=-1<0 xalim(xa)2f(x)f(a)=1<0及极限的保号性可知,在点 x = a x=a x=a
f ( x ) − f ( a ) ( x − a ) 2 < 0 \frac{f(x)-f(a)}{(x-a)^{2}}<0 (xa)2f(x)f(a)<0
f ( x ) − f ( a ) < 0 f(x)-f(a)<0 f(x)f(a)<0
如果 f ′ ( a ) f'(a) f(a)存在, f ′ ( a ) = lim ⁡ x → a f ( x ) − f ( a ) x − a f'(a)=\lim\limits_{x\to a}\frac{f(x)-f(a)}{x-a} f(a)=xalimxaf(x)f(a)
由于 lim ⁡ x → a f ( x ) − f ( a ) ( x − a ) 2 = − 1 \lim\limits_{x\to a}\frac{f(x)-f(a)}{(x-a)^{2}}=-1 xalim(xa)2f(x)f(a)=1,可知
lim ⁡ x → a f ( x ) − f ( a ) x − a ⋅ 1 x − a → − 1 \lim\limits_{x\to a}\frac{f(x)-f(a)}{x-a}\cdot \frac{1}{x-a}\to-1 xalimxaf(x)f(a)xa11
由于 1 x − a → ∞ , lim ⁡ x → a f ( x ) − f ( a ) ( x − a ) 2 = − 1 \frac{1}{x-a}\to \infty,\lim\limits_{x\to a}\frac{f(x)-f(a)}{(x-a)^{2}}=-1 xa1,xalim(xa)2f(x)f(a)=1可知
lim ⁡ x → a f ( x ) − f ( a ) x − a = 0 \lim\limits_{x\to a}\frac{f(x)-f(a)}{x-a}=0 xalimxaf(x)f(a)=0
因此 f ′ ( a ) = 0 f'(a)=0 f(a)=0

3.极限值与无穷小之间的关系

lim ⁡ f ( x ) = A ⇔ f ( x ) = A + α ( x ) \lim f(x)=A\Leftrightarrow f(x)=A+\alpha(x) limf(x)=Af(x)=A+α(x),其中 lim ⁡ α ( x ) = 0 \lim \alpha(x)=0 limα(x)=0

α ( x ) \alpha(x) α(x)也能体现逼近而不相等

三、极限存在准则

1. 夹逼准则

若存在 N N N,当 n > N n>N n>N时, x n ≤ y n ≤ z n x_{n}\leq y_{n}\leq z_{n} xnynzn,且 lim ⁡ n → ∞ x n = lim ⁡ n → ∞ z n = a \lim\limits_{n\to \infty}x_{n}=\lim\limits_{n\to \infty}z_{n}=a nlimxn=nlimzn=a,则 lim ⁡ n → ∞ y n = a \lim\limits_{n\to \infty}y_{n}=a nlimyn=a

常用于 n n n项和定义的数列极限

2. 单调有界准则

单调有界数列必有极限

  • 单调增。有上界的数列必有极限
  • 单调减、有下界的数列必有极限

常用于递推关系定义的数列极限。 x n + 1 = f ( x n ) x_{n+1}=f(x_{n}) xn+1=f(xn)

例6:求极限 lim ⁡ n → ∞ [ n n 2 + 1 + n n 2 + 2 + ⋯ + n n 2 + n ] \lim\limits_{n\to \infty}[\frac{n}{n^{2}+1}+\frac{n}{n^{2}+2}+\cdots+\frac{n}{n^{2}+n}] nlim[n2+1n+n2+2n++n2+nn]

由于
n 2 n 2 + n ≤ [ n n 2 + 1 + n n 2 + 2 + ⋯ + n n 2 + n ] ≤ n 2 n 2 + 1 \frac{n^{2}}{n^{2}+n}\leq[\frac{n}{n^{2}+1}+\frac{n}{n^{2}+2}+\cdots+\frac{n}{n^{2}+n}]\leq \frac{n^{2}}{n^{2}+1} n2+nn2[n2+1n+n2+2n++n2+nn]n2+1n2

lim ⁡ n → ∞ n 2 n 2 + n = lim ⁡ n → ∞ n 2 n 2 + 1 = 1 \lim\limits_{n\to \infty}\frac{n^{2}}{n^{2}+n}=\lim\limits_{n\to \infty}\frac{n^{2}}{n^{2}+1}=1 nlimn2+nn2=nlimn2+1n2=1
由夹逼原理知 lim ⁡ n → ∞ [ n n 2 + 1 + n n 2 + 2 + ⋯ + n n 2 + n ] = 1 \lim\limits_{n\to \infty}[\frac{n}{n^{2}+1}+\frac{n}{n^{2}+2}+\cdots+\frac{n}{n^{2}+n}]=1 nlim[n2+1n+n2+2n++n2+nn]=1

例7:求极限 lim ⁡ x → 0 + x [ 1 x ] \lim\limits_{x\to0^{+}}x[\frac{1}{x}] x0+limx[x1]

对于取整函数,有 x − 1 < [ x ] ≤ x x-1<[x]\leq x x1<[x]x

由于
1 x − 1 < [ 1 x ] ≤ 1 x \frac{1}{x}-1<[\frac{1}{x}]\leq \frac{1}{x} x11<[x1]x1
上式两端同时乘以 x x x,得
1 − x < x [ 1 x ] ≤ 1 1-x<x[\frac{1}{x}]\leq1 1x<x[x1]1
由夹逼原理知 lim ⁡ x → 0 + x [ 1 x ] = 1 \lim\limits_{x\to0^{+}}x[\frac{1}{x}]=1 x0+limx[x1]=1

例8:求极限 lim ⁡ n → ∞ 2 n n ! \lim\limits_{n \to \infty}\frac{2^{n}}{n!} nlimn!2n

由于
0 < 2 n n ! = 2 × 2 1 × 2 × 2 × 2 × ⋯ 3 × 4 × ⋯ × 2 n < 4 n 0<\frac{2^{n}}{n!}=\frac{2\times2}{1\times2}\times\frac{2\times2\times\cdots}{3\times4\times\cdots}\times \frac{2}{n}<\frac{4}{n} 0<n!2n=1×22×2×3×4×2×2××n2<n4

lim ⁡ n → ∞ 4 n = 0 \lim\limits_{n \to \infty}\frac{4}{n}=0 nlimn4=0
由夹逼原理知 lim ⁡ n → ∞ 2 n n ! = 0 \lim\limits_{n \to \infty}\frac{2^{n}}{n!}=0 nlimn!2n=0

使用单调有界准则
x n = 2 n n ! x_{n}= \frac{2^{n}}{n!} xn=n!2n,则
x n + 1 = x n ⋅ 2 n + 1 x_{n+1}=x_{n}\cdot \frac{2}{n+1} xn+1=xnn+12
由于
x n + 1 x n = 2 n + 1 ≤ 1 \frac{x_{n+1}}{x_{n}}= \frac{2}{n+1}\leq1 xnxn+1=n+121
则数列 { x n } \{x_{n}\} {xn}单调减,又 x n = 2 n n ! > 0 x_{n}=\frac{2^{n}}{n!}>0 xn=n!2n>0,即 { x n } \{x_{n}\} {xn}有下界,由单调有界准则知,数列 { x n } \{x_{n}\} {xn}收敛
lim ⁡ n → ∞ x n = a \lim\limits_{n \to \infty}x_{n}=a nlimxn=a,等式 x n + 1 = x n ⋅ 2 n + 1 x_{n+1}=x_{n}\cdot \frac{2}{n+1} xn+1=xnn+12两端取极限,得
a = a ⋅ 0 a=a\cdot0 a=a0
a = 0 a=0 a=0

四、无穷小量

1. 无穷小量的概念

若函数 f ( x ) f(x) f(x) x → x 0 x\to x_{0} xx0(或 x → ∞ x\to \infty x)时的极限为零,则称 f ( x ) f(x) f(x) x → x 0 x\to x_{0} xx0(或 x → ∞ x\to \infty x)时的无穷小量

0 0 0是唯一可以看做无穷小量的常数

2. 无穷小的比较

α ( x ) → 0 , β ( x ) → 0 \alpha(x)\to0,\beta(x)\to0 α(x)0,β(x)0

  • 高阶:若 lim ⁡ α ( x ) β ( x ) = 0 \lim\frac{\alpha(x)}{\beta(x)}=0 limβ(x)α(x)=0;记为 α ( x ) = o ( β ( x ) ) \alpha(x)=o(\beta(x)) α(x)=o(β(x))
    分子趋向零的速度比分母快
  • 低阶:若 lim ⁡ α ( x ) β ( x ) = ∞ \lim\frac{\alpha(x)}{\beta(x)}=\infty limβ(x)α(x)=
    谁趋向零更快,设就是另一个的高阶无穷小
  • 同阶:若 lim ⁡ α ( x ) β ( x ) = C ≠ 0 \lim\frac{\alpha(x)}{\beta(x)}=C\ne0 limβ(x)α(x)=C=0
  • 等价:若 lim ⁡ α ( x ) β ( x ) = 1 \lim\frac{\alpha(x)}{\beta(x)}=1 limβ(x)α(x)=1;记为 α ( x ) ∼ β ( x ) \alpha(x)\sim \beta(x) α(x)β(x)
  • 无穷小的阶:若 lim ⁡ α ( x ) [ β ( x ) ] k = C ≠ 0 \lim \frac{\alpha(x)}{[\beta(x)]^{k}}=C\ne0 lim[β(x)]kα(x)=C=0,称 α ( x ) \alpha(x) α(x) β ( x ) \beta(x) β(x) k k k阶无穷下
    引入 k k k,类似引入度量单位,能够说明对于某一变量的两个高阶无穷小,设趋向零的速度更快

例9:设 f ( x ) = 2 x + 3 x − 2 f(x)=2^{x}+3^{x}-2 f(x)=2x+3x2,则当 x → 0 x\to0 x0时,证明 f ( x ) f(x) f(x) x x x是同阶但非等价的无穷小量

lim ⁡ x → 0 2 x + 3 x − 2 x = lim ⁡ x → 0 2 x − 1 x + lim ⁡ x → 0 3 x − 1 x = ln ⁡ 2 + ln ⁡ 3 = ln ⁡ 6 \lim_{x\to0}\frac{2^{x}+3^{x}-2}{x}=\lim_{x\to0}\frac{2^{x}-1}{x}+\lim_{x\to0}\frac{3^{x}-1}{x}=\ln2+\ln3=\ln6 x0limx2x+3x2=x0limx2x1+x0limx3x1=ln2+ln3=ln6
由于
ln ⁡ 6 ≠ 0 , ln ⁡ 6 ≠ 1 \ln6\ne0,\ln6\ne1 ln6=0,ln6=1
因此, f ( x ) f(x) f(x) x x x是同阶但非等价的无穷小量

3. 无穷小的性质

  • 有限个无穷小的和仍是无穷小
  • 有限个无穷小的积仍是无穷小
  • 无穷小量与有界量的积仍是无穷小
    无穷小量也是有界量

五、无穷大量

1. 无穷大量的概念

若函数 f ( x ) f(x) f(x) x → x 0 x\to x_{0} xx0(或 x → ∞ x\to \infty x)时趋向于无穷,则称 f ( x ) f(x) f(x) x → x 0 x\to x_{0} xx0(或 x → ∞ x\to \infty x)时的无穷大量

即:若对任意给定的 M > 0 M>0 M>0,总存在 δ > 0 \delta>0 δ>0,当 0 < ∣ x − x 0 ∣ < δ 0<|x-x_{0}|<\delta 0<xx0<δ时,恒有 ∣ f ( x ) ∣ > M |f(x)|>M f(x)>M

无穷大量是指 ∣ f ( x ) ∣ → ∞ |f(x)|\to \infty f(x),即 f ( x ) → + ∞ f(x)\to +\infty f(x)+ f ( x ) → − ∞ f(x)\to -\infty f(x)

2. 常用的一些无穷大量的比较

  • x → ∞ x\to \infty x时, ln ⁡ α x < < x β < < a x \ln^{\alpha}x<<x^{\beta}<<a^{x} lnαx<<xβ<<ax,其中 α > 0 , β > 0 , a > 1 \alpha>0,\beta>0,a>1 α>0,β>0,a>1
  • n → ∞ n\to \infty n ln ⁡ α n < < n β < < a n < < n ! < < n n \ln^{\alpha}n<<n^{\beta}<<a^{n}<<n!<<n^{n} lnαn<<nβ<<an<<n!<<nn,其中 α > 0 , β > 0 , a > 1 \alpha>0,\beta>0,a>1 α>0,β>0,a>1

例10:设 f ( x ) = ln ⁡ 10 x , g ( x ) = x , h ( x ) = e x 10 f(x)=\ln^{10}x,g(x)=x,h(x)=e^{\frac{x}{10}} f(x)=ln10x,g(x)=x,h(x)=e10x,则当 x x x充分大时,比较 f ( x ) , g ( x ) , h ( x ) f(x),g(x),h(x) f(x),g(x),h(x)的大小关系

根据常用的一些无穷大量的比较,可得
f ( x ) < g ( x ) < h ( x ) f(x)<g(x)<h(x) f(x)<g(x)<h(x)

3. 无穷大量的性质

  • 有限个无穷大量的积仍是无穷大量
  • 无穷大量与有界变量之和认为无穷大量

4. 无穷大量与无界变量的关系

数列 { x n } \{x_{n}\} {xn}是无穷大量: ∀ M > 0 , ∃ N > 0 \forall M>0,\exists N>0 M>0,N>0,当 n > N n>N n>N,恒有 ∣ x n ∣ > M |x_n|>M xn>M
数列 { x n } \{x_{n}\} {xn}是无界变量: ∀ M > 0 , ∃ N > 0 \forall M>0,\exists N>0 M>0,N>0,使 ∣ x N ∣ > M |x_{N}|>M xN>M

数列是无穷大量一定是无界变量,反之不成立。

例11: x n { n , n 为奇数 0 , n 为偶数 x_{n}\begin{cases}n,n\text{为奇数}\\0,n\text{为偶数}\end{cases} xn{n,n为奇数0,n为偶数
是无界变量但不是无穷大量

无穷大量的性质对于无界变量不通用

5. 无穷大量与无穷小量的关系

在同一极限过程中,如果 f ( x ) f(x) f(x)是无穷大,则 1 f ( x ) \frac{1}{f(x)} f(x)1是无穷小;反之,如果 f ( x ) f(x) f(x)是无穷小,且 f ( x ) ≠ 0 f(x)\ne0 f(x)=0,则 1 f ( x ) \frac{1}{f(x)} f(x)1是无穷大

例12: f ( x ) ≡ 0 f(x)\equiv0 f(x)0,是 x → x 0 x\to x_{0} xx0时的无穷小量,但 1 f ( x ) \frac{1}{f(x)} f(x)1无意义

活动地址:CSDN21天学习挑战赛

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值