【高等数学基础进阶】函数、极限、连续-函数的连续性

本文详细探讨了高等数学中函数的连续性概念,包括连续性的多种定义,以及间断点的分类。通过举例分析,阐述了可去间断点和跳跃间断点的判断方法。此外,还介绍了连续函数的运算性质,如加、减、乘、除的连续性,以及闭区间上连续函数的有界性、最值和介值定理。
摘要由CSDN通过智能技术生成

一、连续性的概念

定义1:若 lim ⁡ Δ x → 0 Δ y = lim ⁡ Δ x → 0 [ f ( x 0 + Δ x ) − f ( x 0 ) ] = 0 \lim\limits_{\Delta x\to0}\Delta y=\lim\limits_{\Delta x\to0}[f(x_{0}+\Delta x)-f(x_{0})]=0 Δx0limΔy=Δx0lim[f(x0+Δx)f(x0)]=0,则称 y = f ( x ) y=f(x) y=f(x)在点 x 0 x_{0} x0处连续

定义2:若 lim ⁡ x → x 0 f ( x ) = f ( x 0 ) \lim\limits_{x\to x_{0}}f(x)=f(x_{0}) xx0limf(x)=f(x0)则称 y = f ( x ) y=f(x) y=f(x)在点 x 0 x_{0} x0处连续

定义3:若 lim ⁡ x → x 0 − f ( x ) = f ( x 0 ) \lim\limits_{x\to x_{0}^{-}}f(x)=f(x_{0}) xx0limf(x)=f(x0)则称 y = f ( x ) y=f(x) y=f(x)在点 x 0 x_{0} x0处左连续
定义4:若 lim ⁡ x → x 0 + f ( x ) = f ( x 0 ) \lim\limits_{x\to x_{0}^{+}}f(x)=f(x_{0}) xx0+limf(x)=f(x0)则称 y = f ( x ) y=f(x) y=f(x)在点 x 0 x_{0} x0处右连续

定理: f ( x ) f(x) f(x)连续 ⇔ f ( x ) \Leftrightarrow f(x) f(x)左连续且右连续

定义4:区间上连续。开区间连续即区间内任意点都连续,闭区间连续即左闭左连续,右闭右连续。

例1:若 f ( x ) = { sin ⁡ 2 x + e 2 a x − 1 x , x ≠ 0 a , x = 0 f(x)=\begin{cases}\frac{\sin 2x+e^{2ax}-1}{x},x\ne0\\a,x=0\end{cases} f(x)={ xsin2x+e2ax1,x=0a,x=0 ( − ∞ , + ∞ ) (-\infty,+\infty) (,+)处连续,则 a = a= a=()

因为题设 f ( x ) f(x) f(x) ( − ∞ , + ∞ ) (-\infty,+\infty) (,+)处连续,又 f ( 0 ) = a f(0)=a f(0)=a,则 lim ⁡ x → x 0 f ( 0 ) = a \lim\limits_{x\to x_{0}}f(0)=a xx0limf(0)=a,即在 x = 0 x=0 x=0处极限存在
lim ⁡ x → x 0 f ( x ) = lim ⁡ x → x 0 sin ⁡ 2 x + e 2 a x − 1 x = lim ⁡ x → x 0 sin ⁡ 2 x x + lim ⁡ x → x 0 e 2 a x − 1 x 显然 lim ⁡ x → x 0 sin ⁡ 2 x x 存在,整体极限存在,因此等式成立 = 2 + 2 a = f ( 0 ) = a \begin{aligned} \lim\limits_{x\to x_{0}}f(x)&=\lim\limits_{x\to x_{0}}\frac{\sin 2x+e^{2ax}-1}{x}\\ &=\lim\limits_{x\to x_{0}}\frac{\sin 2x}{x}+\lim\limits_{x\to x_{0}}\frac{e^{2ax}-1}{x}\\ &显然\lim\limits_{x\to x_{0}}\frac{\sin 2x}{x}存在,整体极限存在,因此等式成立\\ &=2+2a=f(0)=a \end{aligned} xx0limf(x)=xx0limxsin2x+e2ax1=x

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值