【高等数学基础进阶】函数、极限、连续-函数的连续性

一、连续性的概念

定义1:若 lim ⁡ Δ x → 0 Δ y = lim ⁡ Δ x → 0 [ f ( x 0 + Δ x ) − f ( x 0 ) ] = 0 \lim\limits_{\Delta x\to0}\Delta y=\lim\limits_{\Delta x\to0}[f(x_{0}+\Delta x)-f(x_{0})]=0 Δx0limΔy=Δx0lim[f(x0+Δx)f(x0)]=0,则称 y = f ( x ) y=f(x) y=f(x)在点 x 0 x_{0} x0处连续

定义2:若 lim ⁡ x → x 0 f ( x ) = f ( x 0 ) \lim\limits_{x\to x_{0}}f(x)=f(x_{0}) xx0limf(x)=f(x0)则称 y = f ( x ) y=f(x) y=f(x)在点 x 0 x_{0} x0处连续

定义3:若 lim ⁡ x → x 0 − f ( x ) = f ( x 0 ) \lim\limits_{x\to x_{0}^{-}}f(x)=f(x_{0}) xx0limf(x)=f(x0)则称 y = f ( x ) y=f(x) y=f(x)在点 x 0 x_{0} x0处左连续
定义4:若 lim ⁡ x → x 0 + f ( x ) = f ( x 0 ) \lim\limits_{x\to x_{0}^{+}}f(x)=f(x_{0}) xx0+limf(x)=f(x0)则称 y = f ( x ) y=f(x) y=f(x)在点 x 0 x_{0} x0处右连续

定理: f ( x ) f(x) f(x)连续 ⇔ f ( x ) \Leftrightarrow f(x) f(x)左连续且右连续

定义4:区间上连续。开区间连续即区间内任意点都连续,闭区间连续即左闭左连续,右闭右连续。

例1:若 f ( x ) = { sin ⁡ 2 x + e 2 a x − 1 x , x ≠ 0 a , x = 0 f(x)=\begin{cases}\frac{\sin 2x+e^{2ax}-1}{x},x\ne0\\a,x=0\end{cases} f(x)={ xsin2x+e2ax1,x=0a,x=0 ( − ∞ , + ∞ ) (-\infty,+\infty) (,+)处连续,则 a = a= a=()

因为题设 f ( x ) f(x) f(x) ( − ∞ , + ∞ ) (-\infty,+\infty) (,+)处连续,又 f ( 0 ) = a f(0)=a f(0)=a,则 lim ⁡ x → x 0 f ( 0 ) = a \lim\limits_{x\to x_{0}}f(0)=a xx0limf(0)=a,即在 x = 0 x=0 x=0处极限存在
lim ⁡ x → x 0 f ( x ) = lim ⁡ x → x 0 sin ⁡ 2 x + e 2 a x − 1 x = lim ⁡ x → x 0 sin ⁡ 2 x x + lim ⁡ x → x 0 e 2 a x − 1 x 显然 lim ⁡ x → x 0 sin ⁡ 2 x x 存在,整体极限存在,因此等式成立 = 2 + 2 a = f ( 0 ) = a \begin{aligned} \lim\limits_{x\to x_{0}}f(x)&=\lim\limits_{x\to x_{0}}\frac{\sin 2x+e^{2ax}-1}{x}\\ &=\lim\limits_{x\to x_{0}}\frac{\sin 2x}{x}+\lim\limits_{x\to x_{0}}\frac{e^{2ax}-1}{x}\\ &显然\lim\limits_{x\to x_{0}}\frac{\sin 2x}{x}存在,整体极限存在,因此等式成立\\ &=2+2a=f(0)=a \end{aligned} xx0limf(x)=xx0limxsin2x+e2ax1

  • 0
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
### 回答1: 函数极限、导数和积分是微积分中的四个基本概念,它们之间有密切的联系。 函数是自变量和因变量之间的关系,通常用符号 y=f(x) 表示,其中 x 是自变量,y 是因变量,f(x) 表示自变量 x 经过函数 f 处理后得到的结果。函数可以用图像表示,反映出函数值随自变量变化的规律。 极限是一个数列或函数逐渐趋近于某个值的过程,通常用符号 lim 表示。在微积分中,极限是导数和积分的基础。 导数是函数在某一点处的变化率,通常用符号 f'(x) 表示。导数反映了函数在某一点处的切线斜率,可以用来研究函数的增减性、极值、凸凹性等问题。 积分是函数在某一区间上的面积,通常用符号 ∫ 表示。积分是对函数进行反演的过程,可以用来计算曲线下的面积、求函数的平均值、求解微分方程等问题。 在微积分中,这四个概念是密不可分的,它们之间相互联系,构成了微积分的基础理论。 ### 回答2: 函数极限、导数和积分是高等数学中的重要概念和工具。下面分别对它们进行具体的介绍。 1. 函数函数是一种对应关系,输入一个或多个自变量,通过某种规则得到一个或多个因变量。函数可以用数学表达或图表形表示。函数可以是实函数或复函数,具有性质如连续性、可导性和可积性等。 2. 极限极限函数在无穷接近某个值时的性质。对于函数f(x),当自变量x无穷趋近于某一值a时,如果存在一个常数L,使得当x趋近于a时,函数f(x)无限接近于L,就称函数f(x)在x趋近于a时的极限为L。极限定义导数和积分的基础。 3. 导数:导数是函数的变化率,表示函数在某一点的斜率或切线的斜率。对于函数f(x),在某一点x处的导数f'(x)表示函数f(x)在x处的瞬时变化率。导数可以用于求函数的最大值和最小值,以及判断函数的单调性和凹凸性等性质。 4. 积分:积分是函数的累积和,求解函数的面积、体积和质量等问题。对于函数f(x),它的不定积分∫f(x)dx表示函数f(x)的一个原函数,而定积分∫a^b f(x)dx表示函数f(x)在区间[a, b]上的面积。积分可以用于求解曲线下面积、求解物理问题中的位移和速度等。 总结起来,函数是数学中描述自变量和因变量之间关系的工具;极限是描述函数在无穷趋近某个值时的性质;导数是函数的变化率;积分是函数的累积和。这些概念和工具在数学分析、物理学和工程学等领域中有广泛的应用。 ### 回答3: 函数是一种特殊的关系,它将一个自变量的集合映射到一个因变量的集合。函数可以通过公、图像或者表格来表示。 极限函数在自变量接近某个特定值时的趋近情况。当自变量趋近于某个值时,函数的值也会趋近于一个特定的值。极限可以用来描述函数在某个点的趋近性质,比如函数连续性和光滑性等。 导数是函数在某个点的斜率或变化率。它描述了函数在某个点附近的局部变化情况。导数可以通过极限的概念来定义,即函数在该点的导数等于该点的极限。导数可以用来描述函数的变化速率、切线和曲线的凹凸性等。 积分是函数与自变量之间的面积关系。它描述的是函数在某个区间上的累积效应。积分可以通过将区间分为无穷小的小矩形,计算这些小矩形的面积,并求和来进行计算。积分可以用来计算函数的面积、曲线的长度和函数与坐标轴之间的平衡点等。 总之,函数极限、导数和积分是微积分的基本概念。它们是研究函数性质的重要工具,广泛应用于科学、工程和经济等领域。它们的具体知识包括函数定义和表示、极限的计算和性质、导数的计算和应用、积分的计算和应用等。掌握这些知识可以帮助我们更好地理解和应用函数的特性。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值