一、连续性的概念
定义1:若 lim Δ x → 0 Δ y = lim Δ x → 0 [ f ( x 0 + Δ x ) − f ( x 0 ) ] = 0 \lim\limits_{\Delta x\to0}\Delta y=\lim\limits_{\Delta x\to0}[f(x_{0}+\Delta x)-f(x_{0})]=0 Δx→0limΔy=Δx→0lim[f(x0+Δx)−f(x0)]=0,则称 y = f ( x ) y=f(x) y=f(x)在点 x 0 x_{0} x0处连续
定义2:若 lim x → x 0 f ( x ) = f ( x 0 ) \lim\limits_{x\to x_{0}}f(x)=f(x_{0}) x→x0limf(x)=f(x0)则称 y = f ( x ) y=f(x) y=f(x)在点 x 0 x_{0} x0处连续
定义3:若 lim x → x 0 − f ( x ) = f ( x 0 ) \lim\limits_{x\to x_{0}^{-}}f(x)=f(x_{0}) x→x0−limf(x)=f(x0)则称 y = f ( x ) y=f(x) y=f(x)在点 x 0 x_{0} x0处左连续
定义4:若 lim x → x 0 + f ( x ) = f ( x 0 ) \lim\limits_{x\to x_{0}^{+}}f(x)=f(x_{0}) x→x0+limf(x)=f(x0)则称 y = f ( x ) y=f(x) y=f(x)在点 x 0 x_{0} x0处右连续
定理: f ( x ) f(x) f(x)连续 ⇔ f ( x ) \Leftrightarrow f(x) ⇔f(x)左连续且右连续
定义4:区间上连续。开区间连续即区间内任意点都连续,闭区间连续即左闭左连续,右闭右连续。
例1:若 f ( x ) = { sin 2 x + e 2 a x − 1 x , x ≠ 0 a , x = 0 f(x)=\begin{cases}\frac{\sin 2x+e^{2ax}-1}{x},x\ne0\\a,x=0\end{cases} f(x)={ xsin2x+e2ax−1,x=0a,x=0在 ( − ∞ , + ∞ ) (-\infty,+\infty) (−∞,+∞)处连续,则 a = a= a=()
因为题设 f ( x ) f(x) f(x)在 ( − ∞ , + ∞ ) (-\infty,+\infty) (−∞,+∞)处连续,又 f ( 0 ) = a f(0)=a f(0)=a,则 lim x → x 0 f ( 0 ) = a \lim\limits_{x\to x_{0}}f(0)=a x→x0limf(0)=a,即在 x = 0 x=0 x=0处极限存在
lim x → x 0 f ( x ) = lim x → x 0 sin 2 x + e 2 a x − 1 x = lim x → x 0 sin 2 x x + lim x → x 0 e 2 a x − 1 x 显然 lim x → x 0 sin 2 x x 存在,整体极限存在,因此等式成立 = 2 + 2 a = f ( 0 ) = a \begin{aligned} \lim\limits_{x\to x_{0}}f(x)&=\lim\limits_{x\to x_{0}}\frac{\sin 2x+e^{2ax}-1}{x}\\ &=\lim\limits_{x\to x_{0}}\frac{\sin 2x}{x}+\lim\limits_{x\to x_{0}}\frac{e^{2ax}-1}{x}\\ &显然\lim\limits_{x\to x_{0}}\frac{\sin 2x}{x}存在,整体极限存在,因此等式成立\\ &=2+2a=f(0)=a \end{aligned} x→x0limf(x)=x→x0limxsin2x+e2ax−1=x