【高等数学】不定积分

不定积分的概念与性质

一、原函数与不定积分的概念

1. 原函数的定义

如果在区间 I I I上,可导函数 F ( x ) F(x) F(x)的导函数为 f ( x ) f(x) f(x),即对任一 x ∈ I x\in I xI,都有 F ′ ( x ) = f ( x ) 或 d F ( x ) = f ( x ) d x F'(x)=f(x)或dF(x)=f(x)dx F(x)=f(x)dF(x)=f(x)dx那么函数 F ( x ) F(x) F(x)就称为 f ( x ) f(x) f(x)的一个原函数
原函数存在定理:如果函数 f ( x ) f(x) f(x)在区间 I I I上连续,那么在区间 I I I上存在可导函数 F ( x ) F(x) F(x),使对任一 x ∈ I x\in I xI都有 F ′ ( x ) = f ( x ) F'(x)=f(x) F(x)=f(x),简单说,连续函数一定有原函数

2. 不定积分的定义

在区间 I I I上,函数 f ( x ) f(x) f(x)的带有任意项的原函数称为 f ( x ) f(x) f(x)在区间 I I I上的不定积分,记作 ∫ f ( x ) d x \int f(x)dx f(x)dx其中记号 ∫ \int 称为积分号, f ( x ) f(x) f(x)称为被积函数, f ( x ) d x f(x)dx f(x)dx称为被积表达式, x x x称为积分变量

3. 不定积分与原函数的关系

  • 如果 F ( x ) F(x) F(x) f ( x ) f(x) f(x)在区间 I I I上的一个原函数,那么 F ( x ) + C F(x)+C F(x)+C就是 f ( x ) f(x) f(x)的不定积分,即 ∫ f ( x ) d x = F ( x ) \int f(x)dx=F(x) f(x)dx=F(x)
  • 由于 ∫ f ( x ) d x \int f(x)dx f(x)dx f ( x ) f(x) f(x)的原函数,所以 d d x [ ∫ f ( x ) d x ] = f ( x ) 或 d [ ∫ f ( x ) d x ] = f ( x ) d x \frac d{dx}[\int f(x)dx]=f(x)或d[\int f(x)dx]=f(x)dx dxd[f(x)dx]=f(x)d[f(x)dx]=f(x)dx
  • 由于 F ( x ) F(x) F(x) F ′ ( x ) F'(x) F(x)的原函数,所以 ∫ F ′ ( x ) d x = F ( x ) + C 或 ∫ d F ( x ) = F ( x ) + C \int F'(x)dx=F(x)+C或\int dF(x)=F(x)+C F(x)dx=F(x)+CdF(x)=F(x)+C

二、不定积分的性质

  • 设函数 f ( x ) f(x) f(x) g ( x ) g(x) g(x)的原函数存在,则 ∫ [ f ( x ) + g ( x ) ] d x = ∫ f ( x ) d x + ∫ g ( x ) d x \int[f(x)+g(x)]dx=\int f(x)dx+\int g(x)dx [f(x)+g(x)]dx=f(x)dx+g(x)dx
  • 设函数 f ( x ) f(x) f(x)的原函数存在, k k k为非零常数,则 ∫ k f ( x ) d x = k ∫ f ( x ) d x \int kf(x)dx=k\int f(x)dx kf(x)dx=kf(x)dx

三、基本积分公式

∫ k d x = k x + C \int kdx=kx+C kdx=kx+C
∫ x μ d x = x μ + 1 μ + 1 + C \int x^\mu dx=\frac{x^{\mu+1}}{\mu+1}+C xμdx=μ+1xμ+1+C
∫ d x x = ln ⁡ ∣ x ∣ + C \int \frac{dx}x=\ln|x|+C xdx=lnx+C
∫ d x 1 + x 2 = arctan ⁡ x + C \int \frac{dx}{1+x^2}=\arctan x+C 1+x2dx=arctanx+C
∫ d x 1 − x 2 = arcsin ⁡ x + C \int \frac{dx}{\sqrt{1-x^2}}=\arcsin x+C 1x2 dx=arcsinx+C
∫ cos ⁡ x d x = sin ⁡ x + C \int \cos xdx=\sin x+C cosxdx=sinx+C
∫ sin ⁡ x d x = − cos ⁡ x + C \int \sin xdx=-\cos x+C sinxdx=cosx+C
∫ d x cos ⁡ 2 x = tan ⁡ x + C \int \frac{dx}{\cos^2 x}=\tan x+C cos2xdx=tanx+C
∫ d x sin ⁡ 2 x = − cot x + C \int \frac{dx}{\sin^2x}=-\text{cot}x+C sin2xdx=cotx+C
∫ sec ⁡ x tan ⁡ x d x = sec ⁡ x + C \int \sec x\tan xdx=\sec x+C secxtanxdx=secx+C
∫ csc ⁡ x  cot x d x = − csc ⁡ x + C \int \csc x\space\text{cot}xdx=-\csc x+C cscx cotxdx=cscx+C
∫ e x d x = e x + C \int e^xdx=e^x+C exdx=ex+C
∫ a x d x = a x ln ⁡ a + C \int a^xdx=\frac{a^x}{\ln a}+C axdx=lnaax+C
例1:求积分 ∫ tan ⁡ 2 x d x = ∫ ( sec ⁡ 2 − 1 ) d x = tan ⁡ x − x + C ( C 为任意常数 ) \int \tan^2xdx=\int(\sec^2-1)dx=\tan x-x+C\quad(C为任意常数) tan2xdx=(sec21)dx=tanxx+C(C为任意常数)
sec ⁡ 2 x = 1 + tan ⁡ 2 x 、 csc ⁡ 2 x = 1 + cot 2 x \sec^2x=1+\tan^2x、\csc^2x=1+\text{cot}^2x sec2x=1+tan2xcsc2x=1+cot2x
例2:求积分 ∫ sin ⁡ 2 x 2 d x = ∫ 1 − cos ⁡ x 2 d x = 1 2 ∫ ( 1 − cos ⁡ x ) d x = 1 2 ( x − sin ⁡ x ) ( C 为任意常数 ) \int\sin^2\frac x2dx=\int\frac{1-\cos x}2dx=\frac12\int(1-\cos x)dx=\frac12(x-\sin x)\quad(C为任意常数) sin22xdx=21cosxdx=21(1cosx)dx=21(xsinx)(C为任意常数)
cos ⁡ 2 x = 1 − 2 sin ⁡ 2 x 、 sin ⁡ 2 x = 1 − cos ⁡ 2 x 2 、 cos ⁡ 2 x = 1 + cos ⁡ 2 x 2 \cos 2x=1-2\sin^2x、\sin^2x=\frac{1-\cos 2x}{2}、\cos^2x=\frac{1+\cos 2x}{2} cos2x=12sin2xsin2x=21cos2xcos2x=21+cos2x
例3:求积分 ∫ 2 x 4 + x 2 + 3 x 2 + 1 d x \int\frac{2x^4+x^2+3}{x^2+1}dx x2+12x4+x2+3dx
∫ 2 x 4 + x 2 + 3 x 2 + 1 d x = ∫ 2 x 2 ( x 2 + 1 ) − ( x 2 + 1 ) + 4 x 2 + 1 d x = ∫ ( 2 x 2 − 1 + 4 x 2 + 1 ) d x = 2 3 x 3 − x + 4 arctan ⁡ x + C ( C 为任意常数 ) \begin{aligned}\int\frac{2x^4+x^2+3}{x^2+1}dx&=\int\frac{2x^2(x^2+1)-(x^2+1)+4}{x^2+1}dx\\&=\int(2x^2-1+\frac4{x^2+1})dx\\&=\frac23x^3-x+4\arctan x+C\quad(C为任意常数)\end{aligned} x2+12x4+x2+3dx=x2+12x2(x2+1)(x2+1)+4dx=(2x21+x2+14)dx=32x3x+4arctanx+C(C为任意常数)

换元积分法

一、第一类换元法

f ( u ) f(u) f(u)具有原函数, ∫ f ( u ) d u = F ( u ) + C \int f(u)du=F(u)+C f(u)du=F(u)+C u = ϕ ( x ) u=\phi(x) u=ϕ(x)有连续的导数,则 ∫ f [ ϕ ( x ) ] ϕ ′ ( x ) d x = ∫ f [ ϕ ( x ) ] d ϕ ( x ) = F ( ϕ ( x ) ) + C \int f[\phi(x)]\phi'(x)dx=\int f[\phi(x)]d\phi(x)=F(\phi(x))+C f[ϕ(x)]ϕ(x)dx=f[ϕ(x)]dϕ(x)=F(ϕ(x))+C
例1:求 ∫ 1 a 2 + x 2 d x ( a ≠ 0 ) \int\frac1{a^2+x^2}dx\quad(a\ne0) a2+x21dx(a=0)
∫ 1 a 2 + x 2 d x = 1 a 2 ∫ 1 1 + ( x a ) 2 d x = 1 a ∫ 1 1 + ( x a ) 2 d ( x a ) = 1 a arctan ⁡ x a + C ( C 为任意常数 ) \begin{aligned}\int\frac1{a^2+x^2}dx&=\frac1{a^2}\int\frac1{1+(\frac xa)^2}dx\\&=\frac1a\int\frac1{1+(\frac xa)^2}d(\frac xa)\\&=\boxed{\frac1a\arctan \frac xa+C}\quad(C为任意常数)\end{aligned} a2+x21dx=a211+(ax)21dx=a11+(ax)21d(ax)=a1arctanax+C(C为任意常数)
例2:求 ∫ 1 a 2 − x 2 d x ( a > 0 ) \int\frac1{\sqrt{a^2-x^2}}dx\quad(a>0)

  • 14
    点赞
  • 49
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值