【高等数学】微分方程

本文详细介绍了微分方程的基本概念,包括一阶和高阶微分方程的分类,如可分离变量、齐次与非齐次、伯努利方程等的定义和求解方法。涵盖了线性微分方程的通解,如一阶线性方程的通解形式,以及如何处理含有y(n)、y′′=f(x,y′)和y′′=f(y,y′)等形式的方程。还讨论了高阶常系数微分方程的特征根和通解策略,以及非齐次方程的特解构造。
摘要由CSDN通过智能技术生成

微分方程的基本概念

微分方程:含有未知函数、未知函数的导数与自变量之间的关系的方程,叫做微分方程,有时也简称方程

微分方程的阶:微分方程中出现的未知函数的最高阶导数的阶数,叫做微分方程的阶

微分方程的解:找出这样的一个函数,把这个函数带入微分方程使该方程称为恒等式,这个函数就叫做微分方程的解

微分方程的通解:如果微分方程的解中含有任意常数,且任意常数的个数与微分方程的阶数相同,这样的解叫做微分方程的通解。即几阶微分方程,通解中就会有几个任意常数

初值条件:由于通解中含有任意常数,为了确定任意常数的值,引入初值条件,例如:如果微分方程是一阶的,确定任意常数的条件是 y ∣ x = x 0 = y 0 y|_{x=x_0}=y_0 yx=x0=y0,如果微分方程是二阶的,确定任意常数的条件为 y ∣ x = x 0 = y 0 , y ′ ∣ x = x 0 = y 0 ′ y|_{x=x_0}=y_0,y'|_{x=x_0}=y'_0 yx=x0=y0,yx=x0=y0,其中 x 0 , y 0 , y 0 ′ x_0,y_0,y'_0 x0,y0,y0都是给定的值,上述条件即为初值条件,通过初值条件可以确定通解中的任意常数,所得到的就是微分方程的特解。由于几阶微分方程就含有几个任意常数,所以就需要知道几个初值条件

可分离变量的微分方程

一、可分离变量的微分方程的定义

如果一个一阶微分方程能写成 g ( y ) d y = f ( x ) d x g(y)dy=f(x)dx g(y)dy=f(x)dx的形式,也就是说,能把微分方程写成一端只含的函数和 d y dy dy,另一端只含 x x x的函数和 d x dx dx,那么原方程就称为可分离变量的微分方程

二、求解分离变量的微分方程的方法

  1. 将微分方程化为 g ( y ) d y = f ( x ) d x g(y)dy=f(x)dx g(y)dy=f(x)dx
  2. 将上式两端同时积分得 ∫ g ( y ) d t = ∫ f ( x ) d x \int g(y)dt=\int f(x)dx g(y)dt=f(x)dx
  3. G ( x ) G(x) G(x) F ( x ) F(x) F(x)依次为 g ( y ) g(y) g(y) f ( x ) f(x) f(x)的原函数,得 G ( y ) = F ( x ) + C G(y)=F(x)+C G(y)=F(x)+C

例1:求微分方程 sec ⁡ 2 x tan ⁡ y d x + sec ⁡ 2 y tan ⁡ x d y = 0 \sec^2x\tan ydx+\sec^2y\tan xdy=0 sec2xtanydx+sec2ytanxdy=0的通解
sec ⁡ 2 x tan ⁡ y d x + sec ⁡ 2 y tan ⁡ x d y = 0 ⇒ sec ⁡ 2 y tan ⁡ x d y = − sec ⁡ 2 x tan ⁡ y d x ∫ sec ⁡ 2 y tan ⁡ y d y = − ∫ sec ⁡ 2 x tan ⁡ x d x ln ⁡ ∣ tan ⁡ y ∣ = − ln ⁡ ∣ tan ⁡ x ∣ + ln ⁡ C 1 tan ⁡ y tan ⁡ x = C C (为任意常数) \begin{aligned}\sec^2x\tan ydx+\sec^2y\tan xdy&=0\\\Rightarrow \sec^2y\tan xdy&=-\sec^2x\tan ydx\\\int\frac{\sec^2y}{\tan y}dy&=-\int\frac{\sec^2x}{\tan x}dx\\\ln|\tan y|&=-\ln|\tan x|+\ln C_1\\\tan y\tan x&=C\quad C\text{(为任意常数)}\end{aligned} sec2xtanydx+sec2ytanxdysec2ytanxdytanysec2ydylntanytanytanx=0=sec2xtanydx=tanxsec2xdx=lntanx+lnC1=CC(为任意常数)

齐次方程

一、齐次方程的定义

如果一阶微分方程可以化为 d y d x = f ( y x ) \frac{dy}{dx}=f(\frac yx) dxdy=f(xy)的形式,那么就称该微分方程为齐次方程。例如 ( x y − y 2 ) d x − ( x 2 − 2 x y ) d y = 0 (xy-y^2)dx-(x^2-2xy)dy=0 (xyy2)dx(x22xy)dy=0可化为 d y d x = y x − ( y x ) 2 1 − 2 ( y x ) \frac{dy}{dx}=\frac{\frac yx-(\frac yx)^2}{1-2(\frac yx)} dxdy=12(xy)xy(xy)2

二、求解齐次方程的方法

  1. 将原微分方程化为 d y d x = f ( y x ) \frac{dy}{dx}=f(\frac yx) dxdy=f(xy)的形式
  2. u ( x ) = y x u(x)=\frac yx u(x)=xy,则 y = u x y=ux y=ux d y d x = u + x d u d x \frac{dy}{dx}=u+x\frac{du}{dx} dxdy=u+xdxdu
  3. 原微分方程可化为 u + x d u d x = f ( u ) u+x\frac{du}{dx}=f(u) u+xdxdu=f(u),将其分离变量得 d u f ( u ) − u = d x x \frac{du}{f(u)-u}=\frac{dx}{x} f(u)udu=xdx,两边同时积分得 ∫ d u f ( u ) − u = ∫ d x x \int\frac{du}{f(u)-u}=\int\frac{dx}x f(u)udu=xdx
  4. 求出积分之后,将 y x \frac yx xy代替 u u u,得到齐次方程的通解

例1:求齐次微分方程 ( 1 + 2 e x y ) d x + 2 e x y ( 1 − x y ) d y = 0 (1+2e^\frac xy)dx+2e^\frac xy(1-\frac xy)dy=0 (1+2eyx)dx+2eyx(1yx)dy=0的通解
原方程化为, d x d y = 2 e x y ( x y − 1 ) 1 + 2 e x y \frac{dx}{dy}=\frac{2e^\frac xy(\frac xy-1)}{1+2e^\frac xy} dydx=1+2eyx2eyx(yx1)
x y = u , x = u y , d x d y = u + y d u d y \frac xy=u,x=uy,\frac{dx}{dy}=u+y\frac{du}{dy} yx=u,x=uy,dydx=u+ydydu
原微分方程化为,
u + y d u d y = 2 e u ( u − 1 ) 1 + 2 e u 1 + 2 e u u + 2 e u d u = − 1 y d y ln ⁡ ∣ u + 2 e u ∣ = ln ⁡ ∣ y ∣ − 1 + ln ⁡ C 1 y ( u + 2 e u ) = C y ( x y + 2 e x y ) = C x + 2 y e x y − C = 0 C (为任意常数) \begin{aligned}u+y\frac{du}{dy}&=\frac{2e^u(u-1)}{1+2e^u}\\\frac{1+2e^u}{u+2e^u}du&=-\frac1ydy\\\ln|u+2e^u|&=\ln|y|^{-1}+\ln C_1\\y(u+2e^u)&=C\\y(\frac xy+2e^\frac xy)&=C\\x+2ye^\frac xy-C&=0\quad C\text{(为任意常数)}\end{aligned} u+ydyduu+2eu1+2eudulnu+2euy(u+2eu)y(yx+2eyx)x+2yeyxC=1+2eu2eu(u1)=y1dy=lny1+lnC1=C=C=0C(为任意常数)

一阶线性微分方程

一、一阶线性齐次微分方程

1. 一阶线性齐次微分方程的一般形式

一阶微分方程可以化成 d y d x + P ( x ) y = 0 \frac{dy}{dx}+P(x)y=0 dxdy+P(x)y=0的形式,称为一阶线性齐次微分方程

2. 一阶线性齐次微分方程的通解形式

d y d x + P ( x ) y = 0 \frac{dy}{dx}+P(x)y=0 dxdy+P(x)y=0的通解为 y = C e − ∫ P ( x ) d x y=Ce^{-\int P(x)dx} y=CeP(x)dx
推导:
d y d x = − P ( x ) y ∫ d y y = − ∫ P ( x ) d x ln ⁡ ∣ y ∣ = − ∫ P ( x ) d x + C ∣ y ∣ = C ⋅ e − ∫ P ( x ) d x y = ± C ⋅ e − ∫ P ( x ) d x y = C ⋅ e − ∫ P ( x ) d x \begin{aligned}\frac{dy}{dx}&=-P(x)y\\\int\frac{dy}y&=-\int P(x)dx\\\ln|y|&=-\int P(x)dx+C\\|y|&=C\cdot e^{-\int P(x)dx}\\y&=\pm C\cdot e^{-\int P(x)dx}\\y&=C\cdot e^{-\int P(x)dx}\end{aligned} dxdyydylnyyyy=P(x)y=P(x)dx=P(x)dx+C=CeP(x)dx=±CeP(x)dx=CeP(x)dx

二、一阶线性非齐次微分方程

1. 一阶线性非齐次微分方程的一般形式

一阶微分方程可以化为 d y d x + P ( x ) y = Q ( x ) ( Q ( x ) 不恒等于 0 ) \frac{dy}{dx}+P(x)y=Q(x)\quad\text{(}Q(x)\text{不恒等于}0\text{)} dxdy+P(x)y=Q(x)(Q(x)不恒等于0)的形式,称为一阶线性非齐次微分方程

2. 一阶线性非齐次微分方程通解形式

d y d x + P ( x ) y = Q ( x ) \frac{dy}{dx}+P(x)y=Q(x) dxdy+P(x)y=Q(x)的通解为 y = e − ∫ P ( x ) d x [ ∫ Q ( x ) e ∫ P ( x ) d x d x + C ] y=e^{-\int P(x)dx}[\int^Q(x)e^{\int P(x)dx}dx+C] y=eP(x)dx[Q(x)eP(x)dxdx+C]
推导:
y = u ⋅ v y=u\cdot v y=uv
u ′ v + u ( v ′ + P ( x ) v ) = Q ( x ) (1) u'v+u(v'+P(x)v)=Q(x)\quad\text{(1)} uv+u(v+P(x)v)=Q(x)(1)
v ′ + P ( x ) v = 0 ⇒ v = C 1 e − ∫ P ( x ) d x v'+P(x)v=0\Rightarrow v=C_1e^{-\int P(x)dx} v+P(x)v=0v=C1eP(x)dx
代入(1)
u ′ ⋅ C 1 e − ∫ P ( x ) d x = Q ( x ) d u d x ⋅ C 1 e − ∫ P ( x ) d x = Q ( x ) (可分离变量的微分方程) u = 1 C 1 ⋅ ∫ e − ∫ P ( x ) d x ⋅ Q ( x ) d x + C 2 \begin{aligned}u'\cdot C_1e^{-\int P(x)dx}&=Q(x)\\\frac{du}{dx}\cdot C_1e^{-\int P(x)dx}&=Q(x)\quad\text{(可分离变量的微分方程)}\\u&=\frac1{C_1}\cdot \int e^{-\int P(x)dx}\cdot Q(x)dx+C_2\end{aligned} uC1eP(x)dxdxduC1eP(x)dxu=Q(x)=Q(x)(可分离变量的微分方程)=C11eP(x)dxQ(x)dx+C2
y = u ⋅ v = e − ∫ P ( x ) d x [ ∫ Q ( x ) e ∫ P ( x ) d x d x + C ] ( C = C 1 ⋅ C 2 ) \begin{aligned}y=u\cdot v=e^{-\int P(x)dx}[\int^Q(x)e^{\int P(x)dx}dx+C]\quad(C=C_1\cdot C_2)\end{aligned} y=uv=eP(x)dx[Q(x)eP(x)dxdx+C](C=C1C2)

例1:求微分方程 d y d x = 1 x + y \frac{dy}{dx}=\frac1{x+y} dxdy=x+y1的通解
原式化为:
d x d y − x = y \frac{dx}{dy}-x=y dydxx=y
x = e − ∫ ( − 1 ) d y [ ∫ y e ∫ ( − 1 ) d y d y + C ] = ( − y − 1 ) + C ⋅ e y ( C 为任意常数) x=e^{-\int(-1)dy}[\int ye^{\int(-1)dy}dy+C]=(-y-1)+C\cdot e^y\quad\text{(}C\text{为任意常数)} x=e(1)dy[ye(1)dydy+C]=(y1)+Cey(C为任意常数)

三、伯努利方程

1. 伯努利方程的一般形式

方程 d y d x + P ( x ) y = Q ( x ) y n ( 或 y − n d y d x + P ( x ) y 1 − n = Q ( x ) ) ( n ≠ 0 , 1 ) \frac{dy}{dx}+P(x)y=Q(x)y^n(\text{或}y^{-n}\frac{dy}{dx}+P(x)y^{1-n}=Q(x))\quad(n\ne0,1) dxdy+P(x)y=Q(x)yn(yndxdy+P(x)y1n=Q(x))(n=0,1),叫做伯努利方程

2. 求法及通解形式

  1. 将等式两端同除 y n y^n yn,得 y − n d y d x + P ( x ) y 1 − n = Q ( x ) (1) y^{-n}\frac{dy}{dx}+P(x)y^{1-n}=Q(x)\quad\text{(1)} yndxdy+P(x)y1n=Q(x)(1)
  2. z = y 1 − n z=y^{1-n} z=y1n,那么 d z d x = ( 1 − n ) y − n d y d x \frac{dz}{dx}=(1-n)y^{-n}\frac{dy}{dx} dxdz=(1n)yndxdy
  3. ( 1 − n ) (1-n) (1n)乘在(1)式两端,经过代换变成 d z d x + ( 1 − n ) P ( x ) z = ( 1 − n ) Q ( x ) \frac{dz}{dx}+(1-n)P(x)z=(1-n)Q(x) dxdz+(1n)P(x)z=(1n)Q(x),解出方程的通解,再将 z z z y 1 − n y^{1-n} y1n代换,得到方程的通解

例2:求方程 d y d x + y x = a ( ln ⁡ x ) y 2 \frac{dy}{dx}+\frac yx=a(\ln x)y^2 dxdy+xy=a(lnx)y2的通解
等式两端同除 y 2 y^2 y2得, y − 2 d y d x + 1 x y − 1 = a ln ⁡ x y^{-2}\frac{dy}{dx}+\frac1xy^{-1}=a\ln x y2dxdy+x1y1=alnx
z = y − 1 z=y^{-1} z=y1,得, d z d x = ( − 1 ) y − 2 d y d x \frac{dz}{dx}=(-1)y^{-2}\frac{dy}{dx} dxdz=(1)y2dxdy
代入原微分方程得
− d z d x + 1 x ⋅ x = a ln ⁡ x z = e − ∫ ( 1 x ) d x [ ∫ ( − a ln ⁡ x ) e ∫ ( − 1 x ) d x d x + C ] z = x [ − a ln ⁡ 2 x 2 + C ] \begin{aligned}-\frac{dz}{dx}+\frac1x\cdot x&=a\ln x\\z&=e^{-\int(\frac1x)dx}[\int(-a\ln x)e^{\int(-\frac1x)dx}dx+C]\\z&=x[-a\frac{\ln^2x}{2}+C]\end{aligned} dxdz+x1xzz=alnx=e(x1)dx[(alnx)e(x1)dxdx+C]=x[a2ln2x+C]

z = y − 1 z=y^{-1} z=y1代入得 x y ( − a 2 ln ⁡ 2 x + C ) − 1 = 0 ( C 为任意常数) xy(-\frac a2\ln^2x+C)-1=0\quad\text{(}C\text{为任意常数)} xy(2aln2x+C)1=0(C为任意常数)

可降阶的高阶微分方程

一、 y ( n ) = f ( x ) y^{(n)}=f(x) y(n)=f(x)的微分方程

求法

将微分方程 y ( n ) = f ( x ) y^{(n)}=f(x) y(n)=f(x)的两端同时 x x x积分得 y ( n − 1 ) = ∫ f ( x ) d x + C 1 y^{(n-1)}=\int f(x)dx+C_1 y(n1)=f(x)dx+C1,再对等式两边同时积分得 y ( n − 2 ) = ∫ [ ∫ f ( x ) d x + C 1 ] d x + C 2 y^{(n-2)}=\int[\int f(x)dx+C_1]dx+C_2 y(n2)=[f(x)dx+C1]dx+C2,连续积分 n n n次,得到方程含有 n n n个任意常数的通解
例1:求微分方程 y ′ ′ ′ = e 2 x − cos ⁡ x y'''=e^{2x}-\cos x y′′′=e2xcosx的通解
y ′ ′ = ∫ ( e x − cos ⁡ x ) d x = 1 2 e 2 x − sin ⁡ x + C 1 y''=\int(e^x-\cos x)dx=\frac12e^{2x}-\sin x+C_1 y′′=(excosx)dx=21e2xsinx+C1
y ′ = ∫ ( 1 2 e 2 x − sin ⁡ x + C 1 ) d x = 1 4 e 2 x + cos ⁡ x + C 1 x + C 2 y'=\int(\frac12e^{2x}-\sin x+C_1)dx=\frac14e^{2x}+\cos x+C_1x+C_2 y=(21e2xsinx+C1)dx=41e2x+cosx+C1x+C2
y = ∫ ( 1 4 e 2 x + cos ⁡ x + C 1 x + C 2 ) d x = 1 8 e 2 x + sin ⁡ x + 1 2 C 1 + C 2 x + C 3 y=\int(\frac14e^{2x}+\cos x+C_1x+C_2)dx=\frac18e^{2x}+\sin x+\frac12C_1+C_2x+C_3 y=(41e2x+cosx+C1x+C2)dx=81e2x+sinx+21C1+C2x+C3
故通解为 y = 1 8 e 2 x + sin ⁡ x + C x 2 + C 2 x + C 3 ( C , C 2 , C 3 为任意常数) y=\frac18e^{2x}+\sin x+Cx^2+C_2x+C_3\quad\text{(}C,C_2,C_3\text{为任意常数)} y=81e2x+sinx+Cx2+C2x+C3(C,C2,C3为任意常数)

二、 y ′ ′ = f ( x , y ′ ) y''=f(x,y') y′′=f(x,y)型的微分方程

即缺 y y y的微分方程、不显含 y y y的微分方程

求法

  1. y ′ = p y'=p y=p,则 y ′ ′ = d p d x = p ′ y''=\frac{dp}{dx}=p' y′′=dxdp=p
  2. 原微分方程变为 d p d x = f ( x , p ) \frac{dp}{dx}=f(x,p) dxdp=f(x,p),解微分方程得 p = p ( x , C 1 ) p=p(x,C_1) p=p(x,C1)
  3. 由于 d y d x = p \frac{dy}{dx}=p dxdy=p,则 d y d x = p ( x ) \frac{dy}{dx}=p(x) dxdy=p(x),解得 y = ∫ p ( x , C 1 ) d x + C 2 y=\int p(x,C_1)dx+C_2 y=p(x,C1)dx+C2

例2:求微分方程 ( 1 + x 2 ) y ′ ′ = 2 x y ′ (1+x^2)y''=2xy' (1+x2)y′′=2xy满足初值条件 y ∣ x = 0 = 1 , y ′ ∣ x = 0 = 3 y|_{x=0}=1,y'|_{x=0}=3 yx=0=1,yx=0=3的特解
y ′ = p y'=p y=p,故 y ′ ′ = d p d x y''=\frac{dp}{dx} y′′=dxdp
则微分方程可化为
( 1 + x 2 ) d p d x = 2 x p ∫ d p p = ∫ 2 x 1 + x 2 d x ln ⁡ ∣ p ∣ = ln ⁡ ( 1 + x 2 ) + ln ⁡ C 1 \begin{aligned}(1+x^2)\frac{dp}{dx}&=2xp\\\int\frac{dp}p&=\int\frac{2x}{1+x^2}dx\\\ln|p|&=\ln(1+x^2)+\ln C_1\end{aligned} (1+x2)dxdppdplnp=2xp=1+x22xdx=ln(1+x2)+lnC1
d y d x = p = C 2 ( 1 + x 2 ) \frac{dy}{dx}=p=C_2(1+x^2) dxdy=p=C2(1+x2)
∵ \because x = 0 x=0 x=0时, y ′ ( 0 ) = 3 y'(0)=3 y(0)=3
解得, y ′ ( 0 ) = C 2 ( 1 + 0 ) = 3 y'(0)=C_2(1+0)=3 y(0)=C2(1+0)=3
则, y ′ ( x ) = 3 ( 1 + x 2 ) y'(x)=3(1+x^2) y(x)=3(1+x2)
y ( x ) = ∫ 3 ( 1 + x 2 ) d x = 3 x + x 3 + C 3 y(x)=\int3(1+x^2)dx=3x+x^3+C_3 y(x)=3(1+x2)dx=3x+x3+C3
∵ y ( 0 ) = 1 \because y(0)=1 y(0)=1
解得, C 3 = 1 C_3=1 C3=1
∴ y ( x ) = x 3 + 3 x + 1 \therefore y(x)=x^3+3x+1 y(x)=x3+3x+1

三、 y ′ ′ = f ( y , y ′ ) y''=f(y,y') y′′=f(y,y)型的微分方程

即缺 x x x的微分方程、不显含 x x x的微分方程

求法

  1. y ′ = p y'=p y=p,则 y ′ ′ = d p d x = d p d y d y d x = p d p d y y''=\frac{dp}{dx}=\frac{dp}{dy}\frac{dy}{dx}=p\frac{dp}{dy} y′′=dxdp=dydpdxdy=pdydp
  2. 原微分方程变为 p d p d y = f ( y , p ) p\frac{dp}{dy}=f(y,p) pdydp=f(y,p),解微分方程得 p = p ( y , C 1 ) p=p(y,C_1) p=p(y,C1)
  3. 由于 d y d x = p \frac{dy}{dx}=p dxdy=p,再对其分离变量,解得微分方程的通解

例3:求微分方程 y y ′ ′ − y ′ 2 = 0 yy''-y'^2=0 yy′′y′2=0的通解
y ′ = p y'=p y=p,故 y ′ ′ = d p d x = d p d y d y d x = p d p d y y''=\frac{dp}{dx}=\frac{dp}{dy}\frac{dy}{dx}=p\frac{dp}{dy} y′′=dxdp=dydpdxdy=pdydp
y p d p d y − p 2 = 0 yp\frac{dp}{dy}-p^2=0 ypdydpp2=0
p = 0 p=0 p=0时,则 y ≡ C y\equiv C yC
p ≠ 0 p\ne 0 p=0时, y d p d y = p y\frac{dp}{dy}=p ydydp=p
ln ⁡ ∣ p ∣ = ln ⁡ ∣ y ∣ + ln ⁡ ∣ C 1 ∣ ⇒ p = C 1 y \ln|p|=\ln|y|+\ln|C_1|\Rightarrow p=C_1y lnp=lny+lnC1p=C1y
d y d x − C 1 y = 0 ⇒ y = C 2 e C 1 x \frac{dy}{dx}-C_1y=0\Rightarrow y=C_2e^{C_1x} dxdyC1y=0y=C2eC1x
C 1 ≡ 0 C_1\equiv0 C10时, y ≡ C 2 y\equiv C_2 yC2为通解
故通解为 y = C 2 e C 1 x ( C 为任意常数) y=C_2e^{C_1x}\quad\text{(}C\text{为任意常数)} y=C2eC1x(C为任意常数)

高阶线性微分方程

一、线性微分方程解的结构

对于二阶齐次线性方程 y ′ ′ + P ( x ) y ′ + Q ( x ) y = 0 ( 1 ) y''+P(x)y'+Q(x)y=0\quad(1) y′′+P(x)y+Q(x)y=0(1),二阶非齐次线性方程 y ′ ′ + P ( x ) y ′ + y = f ( x ) ( 2 ) y''+P(x)y'+y=f(x)\quad(2) y′′+P(x)y+y=f(x)(2)

定理1:如果函数 y 1 ( x ) y_1(x) y1(x) y 2 ( x ) y_2(x) y2(x)都是方程 ( 1 ) (1) (1)的两个解,那么 y = C 1 y 1 ( x ) + C 2 y 2 ( x ) y=C_1y_1(x)+C_2y_2(x) y=C1y1(x)+C2y2(x)也是方程 ( 1 ) (1) (1)的解,其中 C 1 , C 2 C_1,C_2 C1,C2是任意常数。即,齐次方程的解成倍数相加减仍为齐次方程的解
证明:
{ C 1 y 1 ′ ′ + P ( x ) C 1 y 1 ′ + Q ( x ) C 1 y 1 = 0 ⇒ ( C 1 y 1 ) ′ ′ + P ( x ) ( C 1 y 1 ) ′ + Q ( x ) ( C 1 y 1 ) = 0 C 2 y 2 ′ ′ + P ( x ) C 2 y 2 ′ + Q ( x ) C 2 y 2 = 0 ⇒ ( C 2 y 2 ) ′ ′ + P ( x ) ( C 2 y 2 ) ′ + Q ( x ) ( C 2 y 2 ) = 0 \begin{cases}C_1y_1''+P(x)C_1y_1'+Q(x)C_1y_1=0\Rightarrow (C_1y_1)''+P(x)(C_1y_1)'+Q(x)\\(C_1y_1)=0C_2y_2''+P(x)C_2y_2'+Q(x)C_2y_2=0\Rightarrow (C_2y_2)''+P(x)(C_2y_2)'+Q(x)(C_2y_2)=0\end{cases} {C1y1′′+P(x)C1y1+Q(x)C1y1=0(C1y1)′′+P(x)(C1y1)+Q(x)(C1y1)=0C2y2′′+P(x)C2y2+Q(x)C2y2=0(C2y2)′′+P(x)(C2y2)+Q(x)(C2y2)=0
( C 1 y 1 + C 2 y 2 ) ′ ′ + P ( x ) ( C 1 y 1 + C 2 y 2 ) ′ + Q ( x ) ( C 1 y 1 + C 2 y 2 ) = 0 (C_1y_1+C_2y_2)''+P(x)(C_1y_1+C_2y_2)'+Q(x)(C_1y_1+C_2y_2)=0 (C1y1+C2y2)′′+P(x)(C1y1+C2y2)+Q(x)(C1y1+C2y2)=0
C 1 y 1 + C 2 y 2 = Y C_1y_1+C_2y_2=Y C1y1+C2y2=Y
Y ′ ′ + P ( x ) Y ′ + Q ( x ) Y = 0 Y''+P(x)Y'+Q(x)Y=0 Y′′+P(x)Y+Q(x)Y=0
显然 Y Y Y是方程 ( 1 ) (1) (1)的解

定理2:如果 y 1 ( x ) y_1(x) y1(x) y 2 ( x ) y_2(x) y2(x)方程 ( 1 ) (1) (1)的两个线性无关的特解,那么 y = C 1 y 1 ( x ) + C 2 y 2 ( x ) ( C 1 , C 2 是任意常数 ) y=C_1y_1(x)+C_2y_2(x)\quad(C_1,C_2\text{是任意常数}) y=C1y1(x)+C2y2(x)(C1,C2是任意常数)就是方程(1)的通解
推论:如果 y 1 ( x ) , y 2 ( x ) , ⋯   , y n ( x ) y_1(x),y_2(x),\cdots,y_n(x) y1(x),y2(x),,yn(x) n n n阶其次线性方程 y ( n ) + a 1 ( x ) y ( n − 1 ) + ⋯ + a n − 1 y ′ + a ( x ) y = 0 y^{(n)}+a_1(x)y^{(n-1)}+\cdots+a_{n-1}y'+a(x)y=0 y(n)+a1(x)y(n1)++an1y+a(x)y=0 n n n个线性无关的解,那么此方程的通解为 y = C 1 y 1 ( x ) + C 2 y 2 ( x ) + ⋯ + C n y n ( x ) y=C_1y_1(x)+C_2y_2(x)+\cdots+C_ny_n(x) y=C1y1(x)+C2y2(x)++Cnyn(x),其中 C 1 , C 2 , ⋯   , C n C_1,C_2,\cdots,C_n C1,C2,,Cn为任意常数

定理3:设 y ∗ ( x ) y^*(x) y(x)是二阶非齐次线性方程(2)的一个特解, Y ( x ) Y(x) Y(x)是方程 ( 2 ) (2) (2)对应的齐次方程(1)的通解,则 y = Y ( x ) + y ∗ ( x ) y=Y(x)+y^*(x) y=Y(x)+y(x)是二阶非齐次线性微分方程的通解
证明:
{ Y ′ ′ + P ( x ) Y ′ + Q ( x ) Y = 0 y ∗ ′ ′ + P ( x ) y ∗ ′ + Q ( x ) y ∗ = f ( x ) \begin{cases}Y''+P(x)Y'+Q(x)Y=0\\y^{*''}+P(x)y^{*'}+Q(x)y^{*}=f(x)\end{cases} {Y′′+P(x)Y+Q(x)Y=0y′′+P(x)y+Q(x)y=f(x)
( Y + y ∗ ) ′ ′ + P ( x ) ( Y + y ∗ ) ′ + Q ( x ) ( Y + y ∗ ) = f ( x ) (Y+y^*)''+P(x)(Y+y^*)'+Q(x)(Y+y^*)=f(x) (Y+y)′′+P(x)(Y+y)+Q(x)(Y+y)=f(x)
( Y + y ∗ ) (Y+y^*) (Y+y)是二阶非齐次线性微分方程的通解

定理4:设非齐次线性方程 ( 2 ) (2) (2)的右端 f ( x ) f(x) f(x)是两个函数之和,即 y ′ ′ + P ( x ) y ′ + y = f 1 ( x ) + f 2 ( x ) ( 3 ) y''+P(x)y'+y=f_1(x)+f_2(x)\quad(3) y′′+P(x)y+y=f1(x)+f2(x)(3),且 y 1 ∗ 与 y 2 ∗ y_1^*与y_2^* y1y2分别是方程 y ′ ′ + P ( x ) y ′ + y = f 1 ( x ) y''+P(x)y'+y=f_1(x) y′′+P(x)y+y=f1(x) y ′ ′ + P ( x ) y ′ + y = f 2 ( x ) y''+P(x)y'+y=f_2(x) y′′+P(x)y+y=f2(x)的特解,则 y 1 ∗ + y 2 ∗ y_1^*+y_2^* y1+y2是方程 ( 2 ) (2) (2)的特解
证明:
{ f ( x ) = f 1 ( x ) + f 2 ( x ) ( y 1 ∗ ) ′ ′ + P ( x ) ( y 1 ∗ ) ′ + Q ( x ) y 1 ∗ = f 1 ( x ) [1] ( y 2 ∗ ) ′ ′ + P ( x ) ( y 2 ∗ ) ′ + Q ( x ) y 2 ∗ = f 2 ( x ) [2] \begin{cases}f(x)=f_1(x)+f_2(x)\\(y_1^*)''+P(x)(y_1^*)'+Q(x)y_1^*=f_1(x)\quad\text{[1]}\\(y_2^*)''+P(x)(y_2^*)'+Q(x)y_2^*=f_2(x)\quad\text{[2]}\end{cases} f(x)=f1(x)+f2(x)(y1)′′+P(x)(y1)+Q(x)y1=f1(x)[1](y2)′′+P(x)(y2)+Q(x)y2=f2(x)[2]
[ 1 ] + [ 2 ] [1]+[2] [1]+[2]
( y 1 ∗ + y 2 ∗ ) ′ ′ + P ( x ) ( y 1 ∗ + y 2 ∗ ) ′ + Q ( x ) ( y 1 ∗ + y 2 ∗ ) = f 1 ( x ) + f 2 ( x ) = f ( x ) (y_1^*+y_2^*)''+P(x)(y_1^*+y_2^*)'+Q(x)(y_1^*+y_2^*)=f_1(x)+f_2(x)=f(x) (y1+y2)′′+P(x)(y1+y2)+Q(x)(y1+y2)=f1(x)+f2(x)=f(x)
Y = y 1 ∗ + y 2 ∗ Y=y_1^*+y_2^* Y=y1+y2
Y ′ ′ + P ( x ) Y ′ + Q ( x ) Y = f ( x ) Y''+P(x)Y'+Q(x)Y=f(x) Y′′+P(x)Y+Q(x)Y=f(x)

二、二阶常系数齐次线性微分方程

1. 定义

在二阶齐次线性微分方程 y ′ ′ + P ( x ) y ′ + Q ( x ) y = 0 y''+P(x)y'+Q(x)y=0 y′′+P(x)y+Q(x)y=0中,如果 y ′ , y y',y y,y的系数 P ( x ) , Q ( x ) P(x),Q(x) P(x),Q(x)均为常数,即 y ′ ′ + p y ′ + q y = 0 y''+py'+qy=0 y′′+py+qy=0,其中 p , q p,q p,q是常数,那么就称其为二阶常系数齐次线性微分方程

2. 求法及通解形式

  1. 写出微分方程的特征方程 λ 2 + p λ + q = 0 \lambda^2+p\lambda+q=0 λ2+pλ+q=0。即,将 y ′ ′ + p y ′ + q = 0 y''+py'+q=0 y′′+py+q=0中y的几阶导数就变为 λ \lambda λ的几次方
  2. 求出特征方程的两个根 λ 1 , λ 2 \lambda_1,\lambda_2 λ1,λ2
  3. 根据特征根的不同形式,写出微分方程的通解
特征方程 λ 2 + p λ + q = 0 \lambda^2+p\lambda+q=0 λ2+pλ+q=0的两个根 λ 1 , λ 2 \lambda_1,\lambda_2 λ1,λ2微分方程 y ′ ′ + p y ′ + q = 0 y''+py'+q=0 y′′+py+q=0的通解
两个不相等的实根 λ 1 , λ 2 \lambda_1,\lambda_2 λ1,λ2 y = C 1 e λ 1 x + C 2 e λ 2 x y=C_1e^{\lambda_1x}+C_2e^{\lambda_2x} y=C1eλ1x+C2eλ2x
两个相等的实根 λ 1 = λ 2 = λ \lambda_1=\lambda_2=\lambda λ1=λ2=λ y = ( C 1 + C 2 x ) e λ x y=(C_1+C_2x)e^{\lambda x} y=(C1+C2x)eλx
一对共轭复根 λ 1 , 2 = α ± β i \lambda_{1,2}=\alpha\pm\beta i λ1,2=α±βi y = e α x ( C 1 cos ⁡ β x + C 2 sin ⁡ β x ) y=e^{\alpha x}(C_1\cos\beta x+C_2\sin\beta x) y=eαx(C1cosβx+C2sinβx)

三、高阶常系数齐次线性微分方程

1. 一般形式

n n n阶常系数齐次线性微分方程的一般形式是 y ( n ) + p 1 y ( n − 1 ) + p 2 y ( n − 2 ) + ⋯ + p n − 1 y ′ + p n y = 0 y^{(n)}+p_1y^{(n-1)}+p_2y^{(n-2)}+\cdots+p_{n-1}y'+p_ny=0 y(n)+p1y(n1)+p2y(n2)++pn1y+pny=0,其中 p 1 , p 2 , ⋯   , p n − 1 , p n p_1,p_2,\cdots,p_{n-1},p_n p1,p2,,pn1,pn都是常数

特征方程的根微分方程通解中的对应项
单实数 λ \lambda λ给出一项: C e λ x Ce^{\lambda x} Ceλx
一对单复根 λ 1 , 2 = α ± β i \lambda_{1,2}=\alpha\pm\beta i λ1,2=α±βi给出两项: e α x ( C 1 cos ⁡ β x + C 2 sin ⁡ β x ) e^{\alpha x}(C_1\cos\beta x+C_2\sin\beta x) eαx(C1cosβx+C2sinβx)
k k k重实根 λ \lambda λ给出 k k k项: e λ x ( C 1 + C 2 x + ⋯ + C k x k − 1 ) e^{\lambda x}(C_1+C_2x+\cdots+C_kx^{k-1}) eλx(C1+C2x++Ckxk1)
一对 k k k重复根 λ 1 , 2 = α ± β i \lambda_{1,2}=\alpha\pm\beta i λ1,2=α±βi给出 2 k 2k 2k项: e α x [ ( C 1 + C 2 x + ⋯ + C k x k − 1 ) cos ⁡ β x + ( D 1 + D 2 x + ⋯ + D k x k − 1 ) sin ⁡ β x ] e^{\alpha x}[(C_1+C_2x+\cdots+C_kx^{k-1})\cos\beta x+(D_1+D_2x+\cdots+D_kx^{k-1})\sin\beta x] eαx[(C1+C2x++Ckxk1)cosβx+(D1+D2x++Dkxk1)sinβx]

例1:设高阶常系数齐次线性微分方程的特征根是 λ 1 = 2 , λ 2 = λ 3 = 3 , λ 4 , 5 = 1 ± i , λ 6 , 7 = 2 ± 3 i , λ 8 , 9 = 2 ± 3 i \lambda_1=2,\lambda_2=\lambda_3=3,\lambda_{4,5}=1\pm i,\lambda_{6,7}=2\pm 3i,\lambda_{8,9}=2\pm 3i λ1=2,λ2=λ3=3,λ4,5=1±i,λ6,7=2±3i,λ8,9=2±3i
y 齐通 = C 1 e 2 x + e 3 x ( C 2 + C 3 x ) + e x ( C 4 cos ⁡ x + C 5 sin ⁡ x ) + e 2 x [ ( C 6 + C 7 x ) cos ⁡ 3 x + ( C 8 + C 9 x ) sin ⁡ 3 x ] y_{\text{齐通}}=C_1e^{2x}+e^{3x}(C_2+C_3x)+e^x(C_4\cos x+C_5\sin x)+e^{2x}[(C_6+C_7x)\cos3x+(C_8+C_9x)\sin3x] y齐通=C1e2x+e3x(C2+C3x)+ex(C4cosx+C5sinx)+e2x[(C6+C7x)cos3x+(C8+C9x)sin3x]

例2:求方程 y ( 4 ) − 2 y ′ ′ ′ + 5 y ′ ′ = 0 y^{(4)}-2y'''+5y''=0 y(4)2y′′′+5y′′=0的通解
解特征方程, λ 4 − 2 λ 3 + 5 λ 2 = 0 ⇒ λ 2 ( λ 2 − 2 λ + 5 ) = 0 \lambda^4-2\lambda^3+5\lambda^2=0\Rightarrow\lambda^2(\lambda^2-2\lambda+5)=0 λ42λ3+5λ2=0λ2(λ22λ+5)=0
解得, λ 1 = λ 2 = 0 , λ 3 , 4 = 2 ± 4 − 20 2 = 1 ± 2 i \lambda_1=\lambda_2=0,\lambda_{3,4}=\frac{2\pm\sqrt{4-20}}{2}=1\pm2i λ1=λ2=0λ3,4=22±420 =1±2i
y 齐通 = C 1 + C 2 x + e x [ C 3 cos ⁡ 2 x + C 4 sin ⁡ 2 x ] y_{\text{齐通}}=C_1+C_2x+e^x[C_3\cos 2x+C_4\sin 2x] y齐通=C1+C2x+ex[C3cos2x+C4sin2x]

四、二阶常系数非齐次线性微分方程

1. 定义

在二阶非齐次线性微分方程 y ′ ′ + P ( x ) y ′ + Q ( x ) y = f ( x y''+P(x)y'+Q(x)y=f(x y′′+P(x)y+Q(x)y=f(x)中,如果 y ′ , y y',y y,y的系数 P ( x ) , Q ( x ) P(x),Q(x) P(x),Q(x)均为常数,即 y ′ ′ + p y ′ + q y = f ( x ) y''+py'+qy=f(x) y′′+py+qy=f(x),其中 p , p, p,q是常数,那么就称其为二阶常系数非齐次线性微分方程

2. 求法及通解形式

  1. 先求二阶常系数齐次线性微分方程的通解
    (得到 λ 1 , λ 2 \lambda_1,\lambda_2 λ1,λ2
    • f ( x ) = e λ x P m ( x ) f(x)=e^{\lambda x}P_m(x) f(x)=eλxPm(x)时, P m ( x P_m(x Pm(x)为 x x x m m m次多项式,则微分方程的特解可设为 y ∗ = x k Q m ( x ) e λ x y^*=x^kQ_m(x)e^{\lambda x} y=xkQm(x)eλx,其中 Q m ( x ) Q_m(x) Qm(x)是与 P m ( x ) P_m(x) Pm(x)同次的多项式, k k k是特征方程含根 λ \lambda λ的重数
      y ∗ = x k Q m ( x ) e λ x y^*=x^kQ_m(x)e^{\lambda x} y=xkQm(x)eλx中的 { e λ x 照抄 x k 中的 k = { 0 , λ 1 ≠ λ 且 λ ≠ λ 1 , λ 1 = λ , λ 2 ≠ λ 或 λ 2 = λ , λ 1 ≠ λ 2 , λ 1 = λ 2 = λ Q m ( x ) 是设的与 P m ( x ) 同次多项式 \begin{cases}e^{\lambda x}\text{照抄}\\x^k\text{中的}k=\begin{cases}0,\lambda_1\ne\lambda\text{且}\lambda\ne\lambda\\1,\lambda_1=\lambda,\lambda_2\ne\lambda\text{或}\lambda_2=\lambda,\lambda_1\ne\lambda\\2,\lambda_1=\lambda_2=\lambda\end{cases}\\Q_m(x)\text{是设的与}P_m(x)\text{同次多项式}\end{cases} eλx照抄xk中的k= 0,λ1=λλ=λ1,λ1=λ,λ2=λλ2=λ,λ1=λ2,λ1=λ2=λQm(x)是设的与Pm(x)同次多项式
    • f ( x ) = e α x [ P l ( x ) cos ⁡ β x + P n ( x ) sin ⁡ β x ] f(x)=e^{\alpha x}[P_l(x)\cos\beta x+P_n(x)\sin\beta x] f(x)=eαx[Pl(x)cosβx+Pn(x)sinβx]时,其中 P l ( x ) , P n ( x ) P_l(x),P_n(x) Pl(x),Pn(x)分别为 x x x l l l次, n n n次多项式,则微分方程的特解可设为 y ∗ = x k e α x [ R m ( 1 ) ( x ) cos ⁡ β x + R m ( 2 ) ( x ) sin ⁡ β x ] y^*=x^ke^{\alpha x}[R_m^{(1)}(x)\cos\beta x+R^{(2)}_m(x)\sin\beta x] y=xkeαx[Rm(1)(x)cosβx+Rm(2)(x)sinβx],其中 R m ( 1 ) ( x ) , R m ( 2 ) ( x ) R_m^{(1)}(x),R_m^{(2)}(x) Rm(1)(x),Rm(2)(x)是两个 x x x m m m次多项式, m = max ⁡ { l , n } m=\max\{l,n\} m=max{l,n},当 α ± β i \alpha\pm\beta i α±βi不是齐次方程的特征根时,取 k = 0 k=0 k=0;当 α ± β i \alpha\pm\beta i α±βi是齐次方程的特征根时,取 k = 1 k=1 k=1

再根据定理3即可得到通解

例3:求微分方程 y ′ ′ + y = x cos ⁡ 2 x y''+y=x\cos2x y′′+y=xcos2x的通解
齐次方程, y ′ ′ + y = 0 ⇒ λ 2 + 1 = 0 ⇒ λ 1 , 2 = 0 ± i y''+y=0\Rightarrow \lambda^2+1=0\Rightarrow \lambda_{1,2}=0\pm i y′′+y=0λ2+1=0λ1,2=0±i
y 齐通 = y = e α x ( C 1 cos ⁡ β x + C 2 sin ⁡ β x ) = C 1 cos ⁡ x + C 2 sin ⁡ x y_{\text{齐通}}=y=e^{\alpha x}(C_1\cos\beta x+C_2\sin\beta x)=C_1\cos x+C_2\sin x y齐通=y=eαx(C1cosβx+C2sinβx)=C1cosx+C2sinx
y ∗ = e α x x 0 [ ( a x + b ) cos ⁡ 2 x + ( c x + d ) sin ⁡ 2 x ] = ( a x + b ) cos ⁡ 2 x + ( c x + d ) sin ⁡ 2 x y*=e^{\alpha x}x^0[(ax+b)\cos2x+(cx+d)\sin2x]=(ax+b)\cos2x+(cx+d)\sin2x y=eαxx0[(ax+b)cos2x+(cx+d)sin2x]=(ax+b)cos2x+(cx+d)sin2x
y ∗ ′ = sin ⁡ 2 x ( − 2 a x − 2 b + c ) + cos ⁡ 2 x ( 2 c x + 2 d + a ) y*'=\sin 2x(-2ax-2b+c)+\cos2x(2cx+2d+a) y=sin2x(2ax2b+c)+cos2x(2cx+2d+a)
y ∗ ′ ′ = sin ⁡ 2 x ( − 4 c x − 4 d − 4 a ) + cos ⁡ 2 x ( − 4 a x − 4 b + 4 c ) y*''=\sin2x(-4cx-4d-4a)+\cos2x(-4ax-4b+4c) y′′=sin2x(4cx4d4a)+cos2x(4ax4b+4c)
y ∗ , y ∗ ′ ′ y*,y*'' y,y′′代入微分方程
sin ⁡ 2 x ( − 3 c x − 3 d − 4 a ) + cos ⁡ 2 x ( − 3 a x − 3 b + 4 c ) = x cos ⁡ 2 x \sin2x(-3cx-3d-4a)+\cos2x(-3ax-3b+4c)=x\cos2x sin2x(3cx3d4a)+cos2x(3ax3b+4c)=xcos2x
{ − 3 c = 0 − 3 d − 4 a = 0 3 − 3 a = 1 − 3 b + 4 c = 0 ⇒ { a = − 1 3 b = 0 c = 0 \begin{cases}-3c=0\\-3d-4a=0\\3-3a=1\\-3b+4c=0\end{cases}\Rightarrow\begin{cases}a=-\frac13\\b=0\\c=0\end{cases} 3c=03d4a=033a=13b+4c=0 a=31b=0c=0
y ∗ = − 1 3 x cos ⁡ 2 x + 4 9 sin ⁡ 2 x y*=-\frac13x\cos2x+\frac49\sin2x y=31xcos2x+94sin2x
y 非齐通 = y 齐通 + y ∗ = C 1 cos ⁡ x + C 2 sin ⁡ x − 1 2 x cos ⁡ 2 x + 4 9 sin ⁡ 2 x ( C 1 , C 2 为任意常数 ) y_{\text{非齐通}}=y_{\text{齐通}}+y*=C_1\cos x+C_2\sin x-\frac12x\cos2x+\frac49\sin2x\quad(C_1,C_2\text{为任意常数}) y非齐通=y齐通+y=C1cosx+C2sinx21xcos2x+94sin2x(C1,C2为任意常数)

例4:求微分方程 y ′ ′ + 5 y ′ + 4 y = 3 − 2 x y''+5y'+4y=3-2x y′′+5y+4y=32x的通解
齐次方程, y ′ ′ + 5 y ′ + 4 y = 0 ⇒ λ 2 + 5 λ + 4 = 0 ⇒ λ 1 = − 1 , λ 2 = − 4 y''+5y'+4y=0\Rightarrow \lambda^2+5\lambda+4=0\Rightarrow\lambda_1=-1,\lambda_2=-4 y′′+5y+4y=0λ2+5λ+4=0λ1=1,λ2=4
y 齐通 = C 1 e − x + C 2 e − 4 x y_{\text{齐通}}=C_1e^{-x}+C_2e^{-4x} y齐通=C1ex+C2e4x
y ∗ = x 0 ( a x + b ) = a x + b y*=x^0(ax+b)=ax+b y=x0(ax+b)=ax+b
y ∗ ′ = a y*'=a y=a
y ∗ ′ ′ = 0 y*''=0 y′′=0
y ∗ , y ∗ , y ∗ ′ ′ y*,y*,y*'' y,y,y′′代入微分方程 y ′ ′ + 5 y ′ + 4 y = 3 − 2 x y''+5y'+4y=3-2x y′′+5y+4y=32x
解得 { a = − 1 2 b = 11 8 \begin{cases}a=-\frac12\\b=\frac{11}8\end{cases} {a=21b=811
y ∗ = − 1 2 x + 11 8 y*=-\frac12x+\frac{11}8 y=21x+811
y 非齐通 = y 齐通 + y ∗ = C 1 e − x + C 2 e − 4 x − 1 2 x + 11 8 y_{\text{非齐通}}=y_{\text{齐通}}+y*=C_1e^{-x}+C_2e^{-4x}-\frac12x+\frac{11}8 y非齐通=y齐通+y=C1ex+C2e4x21x+811

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值