微分方程的基本概念
微分方程:含有未知函数、未知函数的导数与自变量之间的关系的方程,叫做微分方程,有时也简称方程
微分方程的阶:微分方程中出现的未知函数的最高阶导数的阶数,叫做微分方程的阶
微分方程的解:找出这样的一个函数,把这个函数带入微分方程使该方程称为恒等式,这个函数就叫做微分方程的解
微分方程的通解:如果微分方程的解中含有任意常数,且任意常数的个数与微分方程的阶数相同,这样的解叫做微分方程的通解。即几阶微分方程,通解中就会有几个任意常数
初值条件:由于通解中含有任意常数,为了确定任意常数的值,引入初值条件,例如:如果微分方程是一阶的,确定任意常数的条件是 y ∣ x = x 0 = y 0 y|_{x=x_0}=y_0 y∣x=x0=y0,如果微分方程是二阶的,确定任意常数的条件为 y ∣ x = x 0 = y 0 , y ′ ∣ x = x 0 = y 0 ′ y|_{x=x_0}=y_0,y'|_{x=x_0}=y'_0 y∣x=x0=y0,y′∣x=x0=y0′,其中 x 0 , y 0 , y 0 ′ x_0,y_0,y'_0 x0,y0,y0′都是给定的值,上述条件即为初值条件,通过初值条件可以确定通解中的任意常数,所得到的就是微分方程的特解。由于几阶微分方程就含有几个任意常数,所以就需要知道几个初值条件
可分离变量的微分方程
一、可分离变量的微分方程的定义
如果一个一阶微分方程能写成 g ( y ) d y = f ( x ) d x g(y)dy=f(x)dx g(y)dy=f(x)dx的形式,也就是说,能把微分方程写成一端只含的函数和 d y dy dy,另一端只含 x x x的函数和 d x dx dx,那么原方程就称为可分离变量的微分方程
二、求解分离变量的微分方程的方法
- 将微分方程化为 g ( y ) d y = f ( x ) d x g(y)dy=f(x)dx g(y)dy=f(x)dx
- 将上式两端同时积分得 ∫ g ( y ) d t = ∫ f ( x ) d x \int g(y)dt=\int f(x)dx ∫g(y)dt=∫f(x)dx
- 设 G ( x ) G(x) G(x)及 F ( x ) F(x) F(x)依次为 g ( y ) g(y) g(y)及 f ( x ) f(x) f(x)的原函数,得 G ( y ) = F ( x ) + C G(y)=F(x)+C G(y)=F(x)+C
例1:求微分方程
sec
2
x
tan
y
d
x
+
sec
2
y
tan
x
d
y
=
0
\sec^2x\tan ydx+\sec^2y\tan xdy=0
sec2xtanydx+sec2ytanxdy=0的通解
sec
2
x
tan
y
d
x
+
sec
2
y
tan
x
d
y
=
0
⇒
sec
2
y
tan
x
d
y
=
−
sec
2
x
tan
y
d
x
∫
sec
2
y
tan
y
d
y
=
−
∫
sec
2
x
tan
x
d
x
ln
∣
tan
y
∣
=
−
ln
∣
tan
x
∣
+
ln
C
1
tan
y
tan
x
=
C
C
(为任意常数)
\begin{aligned}\sec^2x\tan ydx+\sec^2y\tan xdy&=0\\\Rightarrow \sec^2y\tan xdy&=-\sec^2x\tan ydx\\\int\frac{\sec^2y}{\tan y}dy&=-\int\frac{\sec^2x}{\tan x}dx\\\ln|\tan y|&=-\ln|\tan x|+\ln C_1\\\tan y\tan x&=C\quad C\text{(为任意常数)}\end{aligned}
sec2xtanydx+sec2ytanxdy⇒sec2ytanxdy∫tanysec2ydyln∣tany∣tanytanx=0=−sec2xtanydx=−∫tanxsec2xdx=−ln∣tanx∣+lnC1=CC(为任意常数)
齐次方程
一、齐次方程的定义
如果一阶微分方程可以化为 d y d x = f ( y x ) \frac{dy}{dx}=f(\frac yx) dxdy=f(xy)的形式,那么就称该微分方程为齐次方程。例如 ( x y − y 2 ) d x − ( x 2 − 2 x y ) d y = 0 (xy-y^2)dx-(x^2-2xy)dy=0 (xy−y2)dx−(x2−2xy)dy=0可化为 d y d x = y x − ( y x ) 2 1 − 2 ( y x ) \frac{dy}{dx}=\frac{\frac yx-(\frac yx)^2}{1-2(\frac yx)} dxdy=1−2(xy)xy−(xy)2
二、求解齐次方程的方法
- 将原微分方程化为 d y d x = f ( y x ) \frac{dy}{dx}=f(\frac yx) dxdy=f(xy)的形式
- 令 u ( x ) = y x u(x)=\frac yx u(x)=xy,则 y = u x y=ux y=ux, d y d x = u + x d u d x \frac{dy}{dx}=u+x\frac{du}{dx} dxdy=u+xdxdu
- 原微分方程可化为 u + x d u d x = f ( u ) u+x\frac{du}{dx}=f(u) u+xdxdu=f(u),将其分离变量得 d u f ( u ) − u = d x x \frac{du}{f(u)-u}=\frac{dx}{x} f(u)−udu=xdx,两边同时积分得 ∫ d u f ( u ) − u = ∫ d x x \int\frac{du}{f(u)-u}=\int\frac{dx}x ∫f(u)−udu=∫xdx
- 求出积分之后,将 y x \frac yx xy代替 u u u,得到齐次方程的通解
例1:求齐次微分方程
(
1
+
2
e
x
y
)
d
x
+
2
e
x
y
(
1
−
x
y
)
d
y
=
0
(1+2e^\frac xy)dx+2e^\frac xy(1-\frac xy)dy=0
(1+2eyx)dx+2eyx(1−yx)dy=0的通解
原方程化为,
d
x
d
y
=
2
e
x
y
(
x
y
−
1
)
1
+
2
e
x
y
\frac{dx}{dy}=\frac{2e^\frac xy(\frac xy-1)}{1+2e^\frac xy}
dydx=1+2eyx2eyx(yx−1)
令
x
y
=
u
,
x
=
u
y
,
d
x
d
y
=
u
+
y
d
u
d
y
\frac xy=u,x=uy,\frac{dx}{dy}=u+y\frac{du}{dy}
yx=u,x=uy,dydx=u+ydydu
原微分方程化为,
u
+
y
d
u
d
y
=
2
e
u
(
u
−
1
)
1
+
2
e
u
1
+
2
e
u
u
+
2
e
u
d
u
=
−
1
y
d
y
ln
∣
u
+
2
e
u
∣
=
ln
∣
y
∣
−
1
+
ln
C
1
y
(
u
+
2
e
u
)
=
C
y
(
x
y
+
2
e
x
y
)
=
C
x
+
2
y
e
x
y
−
C
=
0
C
(为任意常数)
\begin{aligned}u+y\frac{du}{dy}&=\frac{2e^u(u-1)}{1+2e^u}\\\frac{1+2e^u}{u+2e^u}du&=-\frac1ydy\\\ln|u+2e^u|&=\ln|y|^{-1}+\ln C_1\\y(u+2e^u)&=C\\y(\frac xy+2e^\frac xy)&=C\\x+2ye^\frac xy-C&=0\quad C\text{(为任意常数)}\end{aligned}
u+ydyduu+2eu1+2euduln∣u+2eu∣y(u+2eu)y(yx+2eyx)x+2yeyx−C=1+2eu2eu(u−1)=−y1dy=ln∣y∣−1+lnC1=C=C=0C(为任意常数)
一阶线性微分方程
一、一阶线性齐次微分方程
1. 一阶线性齐次微分方程的一般形式
一阶微分方程可以化成 d y d x + P ( x ) y = 0 \frac{dy}{dx}+P(x)y=0 dxdy+P(x)y=0的形式,称为一阶线性齐次微分方程
2. 一阶线性齐次微分方程的通解形式
d
y
d
x
+
P
(
x
)
y
=
0
\frac{dy}{dx}+P(x)y=0
dxdy+P(x)y=0的通解为
y
=
C
e
−
∫
P
(
x
)
d
x
y=Ce^{-\int P(x)dx}
y=Ce−∫P(x)dx
推导:
d
y
d
x
=
−
P
(
x
)
y
∫
d
y
y
=
−
∫
P
(
x
)
d
x
ln
∣
y
∣
=
−
∫
P
(
x
)
d
x
+
C
∣
y
∣
=
C
⋅
e
−
∫
P
(
x
)
d
x
y
=
±
C
⋅
e
−
∫
P
(
x
)
d
x
y
=
C
⋅
e
−
∫
P
(
x
)
d
x
\begin{aligned}\frac{dy}{dx}&=-P(x)y\\\int\frac{dy}y&=-\int P(x)dx\\\ln|y|&=-\int P(x)dx+C\\|y|&=C\cdot e^{-\int P(x)dx}\\y&=\pm C\cdot e^{-\int P(x)dx}\\y&=C\cdot e^{-\int P(x)dx}\end{aligned}
dxdy∫ydyln∣y∣∣y∣yy=−P(x)y=−∫P(x)dx=−∫P(x)dx+C=C⋅e−∫P(x)dx=±C⋅e−∫P(x)dx=C⋅e−∫P(x)dx
二、一阶线性非齐次微分方程
1. 一阶线性非齐次微分方程的一般形式
一阶微分方程可以化为 d y d x + P ( x ) y = Q ( x ) ( Q ( x ) 不恒等于 0 ) \frac{dy}{dx}+P(x)y=Q(x)\quad\text{(}Q(x)\text{不恒等于}0\text{)} dxdy+P(x)y=Q(x)(Q(x)不恒等于0)的形式,称为一阶线性非齐次微分方程
2. 一阶线性非齐次微分方程通解形式
d
y
d
x
+
P
(
x
)
y
=
Q
(
x
)
\frac{dy}{dx}+P(x)y=Q(x)
dxdy+P(x)y=Q(x)的通解为
y
=
e
−
∫
P
(
x
)
d
x
[
∫
Q
(
x
)
e
∫
P
(
x
)
d
x
d
x
+
C
]
y=e^{-\int P(x)dx}[\int^Q(x)e^{\int P(x)dx}dx+C]
y=e−∫P(x)dx[∫Q(x)e∫P(x)dxdx+C]
推导:
令
y
=
u
⋅
v
y=u\cdot v
y=u⋅v
u
′
v
+
u
(
v
′
+
P
(
x
)
v
)
=
Q
(
x
)
(1)
u'v+u(v'+P(x)v)=Q(x)\quad\text{(1)}
u′v+u(v′+P(x)v)=Q(x)(1)
令
v
′
+
P
(
x
)
v
=
0
⇒
v
=
C
1
e
−
∫
P
(
x
)
d
x
v'+P(x)v=0\Rightarrow v=C_1e^{-\int P(x)dx}
v′+P(x)v=0⇒v=C1e−∫P(x)dx
代入(1)
u
′
⋅
C
1
e
−
∫
P
(
x
)
d
x
=
Q
(
x
)
d
u
d
x
⋅
C
1
e
−
∫
P
(
x
)
d
x
=
Q
(
x
)
(可分离变量的微分方程)
u
=
1
C
1
⋅
∫
e
−
∫
P
(
x
)
d
x
⋅
Q
(
x
)
d
x
+
C
2
\begin{aligned}u'\cdot C_1e^{-\int P(x)dx}&=Q(x)\\\frac{du}{dx}\cdot C_1e^{-\int P(x)dx}&=Q(x)\quad\text{(可分离变量的微分方程)}\\u&=\frac1{C_1}\cdot \int e^{-\int P(x)dx}\cdot Q(x)dx+C_2\end{aligned}
u′⋅C1e−∫P(x)dxdxdu⋅C1e−∫P(x)dxu=Q(x)=Q(x)(可分离变量的微分方程)=C11⋅∫e−∫P(x)dx⋅Q(x)dx+C2
y
=
u
⋅
v
=
e
−
∫
P
(
x
)
d
x
[
∫
Q
(
x
)
e
∫
P
(
x
)
d
x
d
x
+
C
]
(
C
=
C
1
⋅
C
2
)
\begin{aligned}y=u\cdot v=e^{-\int P(x)dx}[\int^Q(x)e^{\int P(x)dx}dx+C]\quad(C=C_1\cdot C_2)\end{aligned}
y=u⋅v=e−∫P(x)dx[∫Q(x)e∫P(x)dxdx+C](C=C1⋅C2)
例1:求微分方程
d
y
d
x
=
1
x
+
y
\frac{dy}{dx}=\frac1{x+y}
dxdy=x+y1的通解
原式化为:
d
x
d
y
−
x
=
y
\frac{dx}{dy}-x=y
dydx−x=y
x
=
e
−
∫
(
−
1
)
d
y
[
∫
y
e
∫
(
−
1
)
d
y
d
y
+
C
]
=
(
−
y
−
1
)
+
C
⋅
e
y
(
C
为任意常数)
x=e^{-\int(-1)dy}[\int ye^{\int(-1)dy}dy+C]=(-y-1)+C\cdot e^y\quad\text{(}C\text{为任意常数)}
x=e−∫(−1)dy[∫ye∫(−1)dydy+C]=(−y−1)+C⋅ey(C为任意常数)
三、伯努利方程
1. 伯努利方程的一般形式
方程 d y d x + P ( x ) y = Q ( x ) y n ( 或 y − n d y d x + P ( x ) y 1 − n = Q ( x ) ) ( n ≠ 0 , 1 ) \frac{dy}{dx}+P(x)y=Q(x)y^n(\text{或}y^{-n}\frac{dy}{dx}+P(x)y^{1-n}=Q(x))\quad(n\ne0,1) dxdy+P(x)y=Q(x)yn(或y−ndxdy+P(x)y1−n=Q(x))(n=0,1),叫做伯努利方程
2. 求法及通解形式
- 将等式两端同除 y n y^n yn,得 y − n d y d x + P ( x ) y 1 − n = Q ( x ) (1) y^{-n}\frac{dy}{dx}+P(x)y^{1-n}=Q(x)\quad\text{(1)} y−ndxdy+P(x)y1−n=Q(x)(1)
- 令 z = y 1 − n z=y^{1-n} z=y1−n,那么 d z d x = ( 1 − n ) y − n d y d x \frac{dz}{dx}=(1-n)y^{-n}\frac{dy}{dx} dxdz=(1−n)y−ndxdy
- 将 ( 1 − n ) (1-n) (1−n)乘在(1)式两端,经过代换变成 d z d x + ( 1 − n ) P ( x ) z = ( 1 − n ) Q ( x ) \frac{dz}{dx}+(1-n)P(x)z=(1-n)Q(x) dxdz+(1−n)P(x)z=(1−n)Q(x),解出方程的通解,再将 z z z用 y 1 − n y^{1-n} y1−n代换,得到方程的通解
例2:求方程
d
y
d
x
+
y
x
=
a
(
ln
x
)
y
2
\frac{dy}{dx}+\frac yx=a(\ln x)y^2
dxdy+xy=a(lnx)y2的通解
等式两端同除
y
2
y^2
y2得,
y
−
2
d
y
d
x
+
1
x
y
−
1
=
a
ln
x
y^{-2}\frac{dy}{dx}+\frac1xy^{-1}=a\ln x
y−2dxdy+x1y−1=alnx
令
z
=
y
−
1
z=y^{-1}
z=y−1,得,
d
z
d
x
=
(
−
1
)
y
−
2
d
y
d
x
\frac{dz}{dx}=(-1)y^{-2}\frac{dy}{dx}
dxdz=(−1)y−2dxdy
代入原微分方程得
−
d
z
d
x
+
1
x
⋅
x
=
a
ln
x
z
=
e
−
∫
(
1
x
)
d
x
[
∫
(
−
a
ln
x
)
e
∫
(
−
1
x
)
d
x
d
x
+
C
]
z
=
x
[
−
a
ln
2
x
2
+
C
]
\begin{aligned}-\frac{dz}{dx}+\frac1x\cdot x&=a\ln x\\z&=e^{-\int(\frac1x)dx}[\int(-a\ln x)e^{\int(-\frac1x)dx}dx+C]\\z&=x[-a\frac{\ln^2x}{2}+C]\end{aligned}
−dxdz+x1⋅xzz=alnx=e−∫(x1)dx[∫(−alnx)e∫(−x1)dxdx+C]=x[−a2ln2x+C]
将 z = y − 1 z=y^{-1} z=y−1代入得 x y ( − a 2 ln 2 x + C ) − 1 = 0 ( C 为任意常数) xy(-\frac a2\ln^2x+C)-1=0\quad\text{(}C\text{为任意常数)} xy(−2aln2x+C)−1=0(C为任意常数)
可降阶的高阶微分方程
一、 y ( n ) = f ( x ) y^{(n)}=f(x) y(n)=f(x)的微分方程
求法
将微分方程
y
(
n
)
=
f
(
x
)
y^{(n)}=f(x)
y(n)=f(x)的两端同时
x
x
x积分得
y
(
n
−
1
)
=
∫
f
(
x
)
d
x
+
C
1
y^{(n-1)}=\int f(x)dx+C_1
y(n−1)=∫f(x)dx+C1,再对等式两边同时积分得
y
(
n
−
2
)
=
∫
[
∫
f
(
x
)
d
x
+
C
1
]
d
x
+
C
2
y^{(n-2)}=\int[\int f(x)dx+C_1]dx+C_2
y(n−2)=∫[∫f(x)dx+C1]dx+C2,连续积分
n
n
n次,得到方程含有
n
n
n个任意常数的通解
例1:求微分方程
y
′
′
′
=
e
2
x
−
cos
x
y'''=e^{2x}-\cos x
y′′′=e2x−cosx的通解
y
′
′
=
∫
(
e
x
−
cos
x
)
d
x
=
1
2
e
2
x
−
sin
x
+
C
1
y''=\int(e^x-\cos x)dx=\frac12e^{2x}-\sin x+C_1
y′′=∫(ex−cosx)dx=21e2x−sinx+C1
y
′
=
∫
(
1
2
e
2
x
−
sin
x
+
C
1
)
d
x
=
1
4
e
2
x
+
cos
x
+
C
1
x
+
C
2
y'=\int(\frac12e^{2x}-\sin x+C_1)dx=\frac14e^{2x}+\cos x+C_1x+C_2
y′=∫(21e2x−sinx+C1)dx=41e2x+cosx+C1x+C2
y
=
∫
(
1
4
e
2
x
+
cos
x
+
C
1
x
+
C
2
)
d
x
=
1
8
e
2
x
+
sin
x
+
1
2
C
1
+
C
2
x
+
C
3
y=\int(\frac14e^{2x}+\cos x+C_1x+C_2)dx=\frac18e^{2x}+\sin x+\frac12C_1+C_2x+C_3
y=∫(41e2x+cosx+C1x+C2)dx=81e2x+sinx+21C1+C2x+C3
故通解为
y
=
1
8
e
2
x
+
sin
x
+
C
x
2
+
C
2
x
+
C
3
(
C
,
C
2
,
C
3
为任意常数)
y=\frac18e^{2x}+\sin x+Cx^2+C_2x+C_3\quad\text{(}C,C_2,C_3\text{为任意常数)}
y=81e2x+sinx+Cx2+C2x+C3(C,C2,C3为任意常数)
二、 y ′ ′ = f ( x , y ′ ) y''=f(x,y') y′′=f(x,y′)型的微分方程
即缺 y y y的微分方程、不显含 y y y的微分方程
求法
- 令 y ′ = p y'=p y′=p,则 y ′ ′ = d p d x = p ′ y''=\frac{dp}{dx}=p' y′′=dxdp=p′
- 原微分方程变为 d p d x = f ( x , p ) \frac{dp}{dx}=f(x,p) dxdp=f(x,p),解微分方程得 p = p ( x , C 1 ) p=p(x,C_1) p=p(x,C1)
- 由于 d y d x = p \frac{dy}{dx}=p dxdy=p,则 d y d x = p ( x ) \frac{dy}{dx}=p(x) dxdy=p(x),解得 y = ∫ p ( x , C 1 ) d x + C 2 y=\int p(x,C_1)dx+C_2 y=∫p(x,C1)dx+C2
例2:求微分方程
(
1
+
x
2
)
y
′
′
=
2
x
y
′
(1+x^2)y''=2xy'
(1+x2)y′′=2xy′满足初值条件
y
∣
x
=
0
=
1
,
y
′
∣
x
=
0
=
3
y|_{x=0}=1,y'|_{x=0}=3
y∣x=0=1,y′∣x=0=3的特解
令
y
′
=
p
y'=p
y′=p,故
y
′
′
=
d
p
d
x
y''=\frac{dp}{dx}
y′′=dxdp
则微分方程可化为
(
1
+
x
2
)
d
p
d
x
=
2
x
p
∫
d
p
p
=
∫
2
x
1
+
x
2
d
x
ln
∣
p
∣
=
ln
(
1
+
x
2
)
+
ln
C
1
\begin{aligned}(1+x^2)\frac{dp}{dx}&=2xp\\\int\frac{dp}p&=\int\frac{2x}{1+x^2}dx\\\ln|p|&=\ln(1+x^2)+\ln C_1\end{aligned}
(1+x2)dxdp∫pdpln∣p∣=2xp=∫1+x22xdx=ln(1+x2)+lnC1
故
d
y
d
x
=
p
=
C
2
(
1
+
x
2
)
\frac{dy}{dx}=p=C_2(1+x^2)
dxdy=p=C2(1+x2)
又
∵
\because
∵ 当
x
=
0
x=0
x=0时,
y
′
(
0
)
=
3
y'(0)=3
y′(0)=3
解得,
y
′
(
0
)
=
C
2
(
1
+
0
)
=
3
y'(0)=C_2(1+0)=3
y′(0)=C2(1+0)=3
则,
y
′
(
x
)
=
3
(
1
+
x
2
)
y'(x)=3(1+x^2)
y′(x)=3(1+x2)
y
(
x
)
=
∫
3
(
1
+
x
2
)
d
x
=
3
x
+
x
3
+
C
3
y(x)=\int3(1+x^2)dx=3x+x^3+C_3
y(x)=∫3(1+x2)dx=3x+x3+C3
有
∵
y
(
0
)
=
1
\because y(0)=1
∵y(0)=1
解得,
C
3
=
1
C_3=1
C3=1
∴
y
(
x
)
=
x
3
+
3
x
+
1
\therefore y(x)=x^3+3x+1
∴y(x)=x3+3x+1
三、 y ′ ′ = f ( y , y ′ ) y''=f(y,y') y′′=f(y,y′)型的微分方程
即缺 x x x的微分方程、不显含 x x x的微分方程
求法
- 令 y ′ = p y'=p y′=p,则 y ′ ′ = d p d x = d p d y d y d x = p d p d y y''=\frac{dp}{dx}=\frac{dp}{dy}\frac{dy}{dx}=p\frac{dp}{dy} y′′=dxdp=dydpdxdy=pdydp
- 原微分方程变为 p d p d y = f ( y , p ) p\frac{dp}{dy}=f(y,p) pdydp=f(y,p),解微分方程得 p = p ( y , C 1 ) p=p(y,C_1) p=p(y,C1)
- 由于 d y d x = p \frac{dy}{dx}=p dxdy=p,再对其分离变量,解得微分方程的通解
例3:求微分方程
y
y
′
′
−
y
′
2
=
0
yy''-y'^2=0
yy′′−y′2=0的通解
令
y
′
=
p
y'=p
y′=p,故
y
′
′
=
d
p
d
x
=
d
p
d
y
d
y
d
x
=
p
d
p
d
y
y''=\frac{dp}{dx}=\frac{dp}{dy}\frac{dy}{dx}=p\frac{dp}{dy}
y′′=dxdp=dydpdxdy=pdydp
y
p
d
p
d
y
−
p
2
=
0
yp\frac{dp}{dy}-p^2=0
ypdydp−p2=0
当
p
=
0
p=0
p=0时,则
y
≡
C
y\equiv C
y≡C
当
p
≠
0
p\ne 0
p=0时,
y
d
p
d
y
=
p
y\frac{dp}{dy}=p
ydydp=p
ln
∣
p
∣
=
ln
∣
y
∣
+
ln
∣
C
1
∣
⇒
p
=
C
1
y
\ln|p|=\ln|y|+\ln|C_1|\Rightarrow p=C_1y
ln∣p∣=ln∣y∣+ln∣C1∣⇒p=C1y
故
d
y
d
x
−
C
1
y
=
0
⇒
y
=
C
2
e
C
1
x
\frac{dy}{dx}-C_1y=0\Rightarrow y=C_2e^{C_1x}
dxdy−C1y=0⇒y=C2eC1x
当
C
1
≡
0
C_1\equiv0
C1≡0时,
y
≡
C
2
y\equiv C_2
y≡C2为通解
故通解为
y
=
C
2
e
C
1
x
(
C
为任意常数)
y=C_2e^{C_1x}\quad\text{(}C\text{为任意常数)}
y=C2eC1x(C为任意常数)
高阶线性微分方程
一、线性微分方程解的结构
对于二阶齐次线性方程 y ′ ′ + P ( x ) y ′ + Q ( x ) y = 0 ( 1 ) y''+P(x)y'+Q(x)y=0\quad(1) y′′+P(x)y′+Q(x)y=0(1),二阶非齐次线性方程 y ′ ′ + P ( x ) y ′ + y = f ( x ) ( 2 ) y''+P(x)y'+y=f(x)\quad(2) y′′+P(x)y′+y=f(x)(2)
定理1:如果函数
y
1
(
x
)
y_1(x)
y1(x)与
y
2
(
x
)
y_2(x)
y2(x)都是方程
(
1
)
(1)
(1)的两个解,那么
y
=
C
1
y
1
(
x
)
+
C
2
y
2
(
x
)
y=C_1y_1(x)+C_2y_2(x)
y=C1y1(x)+C2y2(x)也是方程
(
1
)
(1)
(1)的解,其中
C
1
,
C
2
C_1,C_2
C1,C2是任意常数。即,齐次方程的解成倍数相加减仍为齐次方程的解
证明:
{
C
1
y
1
′
′
+
P
(
x
)
C
1
y
1
′
+
Q
(
x
)
C
1
y
1
=
0
⇒
(
C
1
y
1
)
′
′
+
P
(
x
)
(
C
1
y
1
)
′
+
Q
(
x
)
(
C
1
y
1
)
=
0
C
2
y
2
′
′
+
P
(
x
)
C
2
y
2
′
+
Q
(
x
)
C
2
y
2
=
0
⇒
(
C
2
y
2
)
′
′
+
P
(
x
)
(
C
2
y
2
)
′
+
Q
(
x
)
(
C
2
y
2
)
=
0
\begin{cases}C_1y_1''+P(x)C_1y_1'+Q(x)C_1y_1=0\Rightarrow (C_1y_1)''+P(x)(C_1y_1)'+Q(x)\\(C_1y_1)=0C_2y_2''+P(x)C_2y_2'+Q(x)C_2y_2=0\Rightarrow (C_2y_2)''+P(x)(C_2y_2)'+Q(x)(C_2y_2)=0\end{cases}
{C1y1′′+P(x)C1y1′+Q(x)C1y1=0⇒(C1y1)′′+P(x)(C1y1)′+Q(x)(C1y1)=0C2y2′′+P(x)C2y2′+Q(x)C2y2=0⇒(C2y2)′′+P(x)(C2y2)′+Q(x)(C2y2)=0
(
C
1
y
1
+
C
2
y
2
)
′
′
+
P
(
x
)
(
C
1
y
1
+
C
2
y
2
)
′
+
Q
(
x
)
(
C
1
y
1
+
C
2
y
2
)
=
0
(C_1y_1+C_2y_2)''+P(x)(C_1y_1+C_2y_2)'+Q(x)(C_1y_1+C_2y_2)=0
(C1y1+C2y2)′′+P(x)(C1y1+C2y2)′+Q(x)(C1y1+C2y2)=0
令
C
1
y
1
+
C
2
y
2
=
Y
C_1y_1+C_2y_2=Y
C1y1+C2y2=Y
Y
′
′
+
P
(
x
)
Y
′
+
Q
(
x
)
Y
=
0
Y''+P(x)Y'+Q(x)Y=0
Y′′+P(x)Y′+Q(x)Y=0
显然
Y
Y
Y是方程
(
1
)
(1)
(1)的解
定理2:如果
y
1
(
x
)
y_1(x)
y1(x)与
y
2
(
x
)
y_2(x)
y2(x)方程
(
1
)
(1)
(1)的两个线性无关的特解,那么
y
=
C
1
y
1
(
x
)
+
C
2
y
2
(
x
)
(
C
1
,
C
2
是任意常数
)
y=C_1y_1(x)+C_2y_2(x)\quad(C_1,C_2\text{是任意常数})
y=C1y1(x)+C2y2(x)(C1,C2是任意常数)就是方程(1)的通解
推论:如果
y
1
(
x
)
,
y
2
(
x
)
,
⋯
,
y
n
(
x
)
y_1(x),y_2(x),\cdots,y_n(x)
y1(x),y2(x),⋯,yn(x)是
n
n
n阶其次线性方程
y
(
n
)
+
a
1
(
x
)
y
(
n
−
1
)
+
⋯
+
a
n
−
1
y
′
+
a
(
x
)
y
=
0
y^{(n)}+a_1(x)y^{(n-1)}+\cdots+a_{n-1}y'+a(x)y=0
y(n)+a1(x)y(n−1)+⋯+an−1y′+a(x)y=0的
n
n
n个线性无关的解,那么此方程的通解为
y
=
C
1
y
1
(
x
)
+
C
2
y
2
(
x
)
+
⋯
+
C
n
y
n
(
x
)
y=C_1y_1(x)+C_2y_2(x)+\cdots+C_ny_n(x)
y=C1y1(x)+C2y2(x)+⋯+Cnyn(x),其中
C
1
,
C
2
,
⋯
,
C
n
C_1,C_2,\cdots,C_n
C1,C2,⋯,Cn为任意常数
定理3:设
y
∗
(
x
)
y^*(x)
y∗(x)是二阶非齐次线性方程(2)的一个特解,
Y
(
x
)
Y(x)
Y(x)是方程
(
2
)
(2)
(2)对应的齐次方程(1)的通解,则
y
=
Y
(
x
)
+
y
∗
(
x
)
y=Y(x)+y^*(x)
y=Y(x)+y∗(x)是二阶非齐次线性微分方程的通解
证明:
{
Y
′
′
+
P
(
x
)
Y
′
+
Q
(
x
)
Y
=
0
y
∗
′
′
+
P
(
x
)
y
∗
′
+
Q
(
x
)
y
∗
=
f
(
x
)
\begin{cases}Y''+P(x)Y'+Q(x)Y=0\\y^{*''}+P(x)y^{*'}+Q(x)y^{*}=f(x)\end{cases}
{Y′′+P(x)Y′+Q(x)Y=0y∗′′+P(x)y∗′+Q(x)y∗=f(x)
(
Y
+
y
∗
)
′
′
+
P
(
x
)
(
Y
+
y
∗
)
′
+
Q
(
x
)
(
Y
+
y
∗
)
=
f
(
x
)
(Y+y^*)''+P(x)(Y+y^*)'+Q(x)(Y+y^*)=f(x)
(Y+y∗)′′+P(x)(Y+y∗)′+Q(x)(Y+y∗)=f(x)
故
(
Y
+
y
∗
)
(Y+y^*)
(Y+y∗)是二阶非齐次线性微分方程的通解
定理4:设非齐次线性方程
(
2
)
(2)
(2)的右端
f
(
x
)
f(x)
f(x)是两个函数之和,即
y
′
′
+
P
(
x
)
y
′
+
y
=
f
1
(
x
)
+
f
2
(
x
)
(
3
)
y''+P(x)y'+y=f_1(x)+f_2(x)\quad(3)
y′′+P(x)y′+y=f1(x)+f2(x)(3),且
y
1
∗
与
y
2
∗
y_1^*与y_2^*
y1∗与y2∗分别是方程
y
′
′
+
P
(
x
)
y
′
+
y
=
f
1
(
x
)
y''+P(x)y'+y=f_1(x)
y′′+P(x)y′+y=f1(x)与
y
′
′
+
P
(
x
)
y
′
+
y
=
f
2
(
x
)
y''+P(x)y'+y=f_2(x)
y′′+P(x)y′+y=f2(x)的特解,则
y
1
∗
+
y
2
∗
y_1^*+y_2^*
y1∗+y2∗是方程
(
2
)
(2)
(2)的特解
证明:
{
f
(
x
)
=
f
1
(
x
)
+
f
2
(
x
)
(
y
1
∗
)
′
′
+
P
(
x
)
(
y
1
∗
)
′
+
Q
(
x
)
y
1
∗
=
f
1
(
x
)
[1]
(
y
2
∗
)
′
′
+
P
(
x
)
(
y
2
∗
)
′
+
Q
(
x
)
y
2
∗
=
f
2
(
x
)
[2]
\begin{cases}f(x)=f_1(x)+f_2(x)\\(y_1^*)''+P(x)(y_1^*)'+Q(x)y_1^*=f_1(x)\quad\text{[1]}\\(y_2^*)''+P(x)(y_2^*)'+Q(x)y_2^*=f_2(x)\quad\text{[2]}\end{cases}
⎩
⎨
⎧f(x)=f1(x)+f2(x)(y1∗)′′+P(x)(y1∗)′+Q(x)y1∗=f1(x)[1](y2∗)′′+P(x)(y2∗)′+Q(x)y2∗=f2(x)[2]
[
1
]
+
[
2
]
[1]+[2]
[1]+[2]得
(
y
1
∗
+
y
2
∗
)
′
′
+
P
(
x
)
(
y
1
∗
+
y
2
∗
)
′
+
Q
(
x
)
(
y
1
∗
+
y
2
∗
)
=
f
1
(
x
)
+
f
2
(
x
)
=
f
(
x
)
(y_1^*+y_2^*)''+P(x)(y_1^*+y_2^*)'+Q(x)(y_1^*+y_2^*)=f_1(x)+f_2(x)=f(x)
(y1∗+y2∗)′′+P(x)(y1∗+y2∗)′+Q(x)(y1∗+y2∗)=f1(x)+f2(x)=f(x)
令
Y
=
y
1
∗
+
y
2
∗
Y=y_1^*+y_2^*
Y=y1∗+y2∗
则
Y
′
′
+
P
(
x
)
Y
′
+
Q
(
x
)
Y
=
f
(
x
)
Y''+P(x)Y'+Q(x)Y=f(x)
Y′′+P(x)Y′+Q(x)Y=f(x)
二、二阶常系数齐次线性微分方程
1. 定义
在二阶齐次线性微分方程 y ′ ′ + P ( x ) y ′ + Q ( x ) y = 0 y''+P(x)y'+Q(x)y=0 y′′+P(x)y′+Q(x)y=0中,如果 y ′ , y y',y y′,y的系数 P ( x ) , Q ( x ) P(x),Q(x) P(x),Q(x)均为常数,即 y ′ ′ + p y ′ + q y = 0 y''+py'+qy=0 y′′+py′+qy=0,其中 p , q p,q p,q是常数,那么就称其为二阶常系数齐次线性微分方程
2. 求法及通解形式
- 写出微分方程的特征方程 λ 2 + p λ + q = 0 \lambda^2+p\lambda+q=0 λ2+pλ+q=0。即,将 y ′ ′ + p y ′ + q = 0 y''+py'+q=0 y′′+py′+q=0中y的几阶导数就变为 λ \lambda λ的几次方
- 求出特征方程的两个根 λ 1 , λ 2 \lambda_1,\lambda_2 λ1,λ2
- 根据特征根的不同形式,写出微分方程的通解
特征方程 λ 2 + p λ + q = 0 \lambda^2+p\lambda+q=0 λ2+pλ+q=0的两个根 λ 1 , λ 2 \lambda_1,\lambda_2 λ1,λ2 | 微分方程 y ′ ′ + p y ′ + q = 0 y''+py'+q=0 y′′+py′+q=0的通解 |
---|---|
两个不相等的实根 λ 1 , λ 2 \lambda_1,\lambda_2 λ1,λ2 | y = C 1 e λ 1 x + C 2 e λ 2 x y=C_1e^{\lambda_1x}+C_2e^{\lambda_2x} y=C1eλ1x+C2eλ2x |
两个相等的实根 λ 1 = λ 2 = λ \lambda_1=\lambda_2=\lambda λ1=λ2=λ | y = ( C 1 + C 2 x ) e λ x y=(C_1+C_2x)e^{\lambda x} y=(C1+C2x)eλx |
一对共轭复根 λ 1 , 2 = α ± β i \lambda_{1,2}=\alpha\pm\beta i λ1,2=α±βi | y = e α x ( C 1 cos β x + C 2 sin β x ) y=e^{\alpha x}(C_1\cos\beta x+C_2\sin\beta x) y=eαx(C1cosβx+C2sinβx) |
三、高阶常系数齐次线性微分方程
1. 一般形式
n n n阶常系数齐次线性微分方程的一般形式是 y ( n ) + p 1 y ( n − 1 ) + p 2 y ( n − 2 ) + ⋯ + p n − 1 y ′ + p n y = 0 y^{(n)}+p_1y^{(n-1)}+p_2y^{(n-2)}+\cdots+p_{n-1}y'+p_ny=0 y(n)+p1y(n−1)+p2y(n−2)+⋯+pn−1y′+pny=0,其中 p 1 , p 2 , ⋯ , p n − 1 , p n p_1,p_2,\cdots,p_{n-1},p_n p1,p2,⋯,pn−1,pn都是常数
特征方程的根 | 微分方程通解中的对应项 |
---|---|
单实数 λ \lambda λ | 给出一项: C e λ x Ce^{\lambda x} Ceλx |
一对单复根 λ 1 , 2 = α ± β i \lambda_{1,2}=\alpha\pm\beta i λ1,2=α±βi | 给出两项: e α x ( C 1 cos β x + C 2 sin β x ) e^{\alpha x}(C_1\cos\beta x+C_2\sin\beta x) eαx(C1cosβx+C2sinβx) |
k k k重实根 λ \lambda λ | 给出 k k k项: e λ x ( C 1 + C 2 x + ⋯ + C k x k − 1 ) e^{\lambda x}(C_1+C_2x+\cdots+C_kx^{k-1}) eλx(C1+C2x+⋯+Ckxk−1) |
一对 k k k重复根 λ 1 , 2 = α ± β i \lambda_{1,2}=\alpha\pm\beta i λ1,2=α±βi | 给出 2 k 2k 2k项: e α x [ ( C 1 + C 2 x + ⋯ + C k x k − 1 ) cos β x + ( D 1 + D 2 x + ⋯ + D k x k − 1 ) sin β x ] e^{\alpha x}[(C_1+C_2x+\cdots+C_kx^{k-1})\cos\beta x+(D_1+D_2x+\cdots+D_kx^{k-1})\sin\beta x] eαx[(C1+C2x+⋯+Ckxk−1)cosβx+(D1+D2x+⋯+Dkxk−1)sinβx] |
例1:设高阶常系数齐次线性微分方程的特征根是
λ
1
=
2
,
λ
2
=
λ
3
=
3
,
λ
4
,
5
=
1
±
i
,
λ
6
,
7
=
2
±
3
i
,
λ
8
,
9
=
2
±
3
i
\lambda_1=2,\lambda_2=\lambda_3=3,\lambda_{4,5}=1\pm i,\lambda_{6,7}=2\pm 3i,\lambda_{8,9}=2\pm 3i
λ1=2,λ2=λ3=3,λ4,5=1±i,λ6,7=2±3i,λ8,9=2±3i
y
齐通
=
C
1
e
2
x
+
e
3
x
(
C
2
+
C
3
x
)
+
e
x
(
C
4
cos
x
+
C
5
sin
x
)
+
e
2
x
[
(
C
6
+
C
7
x
)
cos
3
x
+
(
C
8
+
C
9
x
)
sin
3
x
]
y_{\text{齐通}}=C_1e^{2x}+e^{3x}(C_2+C_3x)+e^x(C_4\cos x+C_5\sin x)+e^{2x}[(C_6+C_7x)\cos3x+(C_8+C_9x)\sin3x]
y齐通=C1e2x+e3x(C2+C3x)+ex(C4cosx+C5sinx)+e2x[(C6+C7x)cos3x+(C8+C9x)sin3x]
例2:求方程
y
(
4
)
−
2
y
′
′
′
+
5
y
′
′
=
0
y^{(4)}-2y'''+5y''=0
y(4)−2y′′′+5y′′=0的通解
解特征方程,
λ
4
−
2
λ
3
+
5
λ
2
=
0
⇒
λ
2
(
λ
2
−
2
λ
+
5
)
=
0
\lambda^4-2\lambda^3+5\lambda^2=0\Rightarrow\lambda^2(\lambda^2-2\lambda+5)=0
λ4−2λ3+5λ2=0⇒λ2(λ2−2λ+5)=0
解得,
λ
1
=
λ
2
=
0
,
λ
3
,
4
=
2
±
4
−
20
2
=
1
±
2
i
\lambda_1=\lambda_2=0,\lambda_{3,4}=\frac{2\pm\sqrt{4-20}}{2}=1\pm2i
λ1=λ2=0,λ3,4=22±4−20=1±2i
故
y
齐通
=
C
1
+
C
2
x
+
e
x
[
C
3
cos
2
x
+
C
4
sin
2
x
]
y_{\text{齐通}}=C_1+C_2x+e^x[C_3\cos 2x+C_4\sin 2x]
y齐通=C1+C2x+ex[C3cos2x+C4sin2x]
四、二阶常系数非齐次线性微分方程
1. 定义
在二阶非齐次线性微分方程 y ′ ′ + P ( x ) y ′ + Q ( x ) y = f ( x y''+P(x)y'+Q(x)y=f(x y′′+P(x)y′+Q(x)y=f(x)中,如果 y ′ , y y',y y′,y的系数 P ( x ) , Q ( x ) P(x),Q(x) P(x),Q(x)均为常数,即 y ′ ′ + p y ′ + q y = f ( x ) y''+py'+qy=f(x) y′′+py′+qy=f(x),其中 p , p, p,q是常数,那么就称其为二阶常系数非齐次线性微分方程
2. 求法及通解形式
- 先求二阶常系数齐次线性微分方程的通解
(得到 λ 1 , λ 2 \lambda_1,\lambda_2 λ1,λ2) -
- 当
f
(
x
)
=
e
λ
x
P
m
(
x
)
f(x)=e^{\lambda x}P_m(x)
f(x)=eλxPm(x)时,
P
m
(
x
P_m(x
Pm(x)为
x
x
x的
m
m
m次多项式,则微分方程的特解可设为
y
∗
=
x
k
Q
m
(
x
)
e
λ
x
y^*=x^kQ_m(x)e^{\lambda x}
y∗=xkQm(x)eλx,其中
Q
m
(
x
)
Q_m(x)
Qm(x)是与
P
m
(
x
)
P_m(x)
Pm(x)同次的多项式,
k
k
k是特征方程含根
λ
\lambda
λ的重数
( y ∗ = x k Q m ( x ) e λ x y^*=x^kQ_m(x)e^{\lambda x} y∗=xkQm(x)eλx中的 { e λ x 照抄 x k 中的 k = { 0 , λ 1 ≠ λ 且 λ ≠ λ 1 , λ 1 = λ , λ 2 ≠ λ 或 λ 2 = λ , λ 1 ≠ λ 2 , λ 1 = λ 2 = λ Q m ( x ) 是设的与 P m ( x ) 同次多项式 \begin{cases}e^{\lambda x}\text{照抄}\\x^k\text{中的}k=\begin{cases}0,\lambda_1\ne\lambda\text{且}\lambda\ne\lambda\\1,\lambda_1=\lambda,\lambda_2\ne\lambda\text{或}\lambda_2=\lambda,\lambda_1\ne\lambda\\2,\lambda_1=\lambda_2=\lambda\end{cases}\\Q_m(x)\text{是设的与}P_m(x)\text{同次多项式}\end{cases} ⎩ ⎨ ⎧eλx照抄xk中的k=⎩ ⎨ ⎧0,λ1=λ且λ=λ1,λ1=λ,λ2=λ或λ2=λ,λ1=λ2,λ1=λ2=λQm(x)是设的与Pm(x)同次多项式) - 当 f ( x ) = e α x [ P l ( x ) cos β x + P n ( x ) sin β x ] f(x)=e^{\alpha x}[P_l(x)\cos\beta x+P_n(x)\sin\beta x] f(x)=eαx[Pl(x)cosβx+Pn(x)sinβx]时,其中 P l ( x ) , P n ( x ) P_l(x),P_n(x) Pl(x),Pn(x)分别为 x x x的 l l l次, n n n次多项式,则微分方程的特解可设为 y ∗ = x k e α x [ R m ( 1 ) ( x ) cos β x + R m ( 2 ) ( x ) sin β x ] y^*=x^ke^{\alpha x}[R_m^{(1)}(x)\cos\beta x+R^{(2)}_m(x)\sin\beta x] y∗=xkeαx[Rm(1)(x)cosβx+Rm(2)(x)sinβx],其中 R m ( 1 ) ( x ) , R m ( 2 ) ( x ) R_m^{(1)}(x),R_m^{(2)}(x) Rm(1)(x),Rm(2)(x)是两个 x x x的 m m m次多项式, m = max { l , n } m=\max\{l,n\} m=max{l,n},当 α ± β i \alpha\pm\beta i α±βi不是齐次方程的特征根时,取 k = 0 k=0 k=0;当 α ± β i \alpha\pm\beta i α±βi是齐次方程的特征根时,取 k = 1 k=1 k=1
- 当
f
(
x
)
=
e
λ
x
P
m
(
x
)
f(x)=e^{\lambda x}P_m(x)
f(x)=eλxPm(x)时,
P
m
(
x
P_m(x
Pm(x)为
x
x
x的
m
m
m次多项式,则微分方程的特解可设为
y
∗
=
x
k
Q
m
(
x
)
e
λ
x
y^*=x^kQ_m(x)e^{\lambda x}
y∗=xkQm(x)eλx,其中
Q
m
(
x
)
Q_m(x)
Qm(x)是与
P
m
(
x
)
P_m(x)
Pm(x)同次的多项式,
k
k
k是特征方程含根
λ
\lambda
λ的重数
再根据定理3即可得到通解
例3:求微分方程
y
′
′
+
y
=
x
cos
2
x
y''+y=x\cos2x
y′′+y=xcos2x的通解
齐次方程,
y
′
′
+
y
=
0
⇒
λ
2
+
1
=
0
⇒
λ
1
,
2
=
0
±
i
y''+y=0\Rightarrow \lambda^2+1=0\Rightarrow \lambda_{1,2}=0\pm i
y′′+y=0⇒λ2+1=0⇒λ1,2=0±i
y
齐通
=
y
=
e
α
x
(
C
1
cos
β
x
+
C
2
sin
β
x
)
=
C
1
cos
x
+
C
2
sin
x
y_{\text{齐通}}=y=e^{\alpha x}(C_1\cos\beta x+C_2\sin\beta x)=C_1\cos x+C_2\sin x
y齐通=y=eαx(C1cosβx+C2sinβx)=C1cosx+C2sinx
设
y
∗
=
e
α
x
x
0
[
(
a
x
+
b
)
cos
2
x
+
(
c
x
+
d
)
sin
2
x
]
=
(
a
x
+
b
)
cos
2
x
+
(
c
x
+
d
)
sin
2
x
y*=e^{\alpha x}x^0[(ax+b)\cos2x+(cx+d)\sin2x]=(ax+b)\cos2x+(cx+d)\sin2x
y∗=eαxx0[(ax+b)cos2x+(cx+d)sin2x]=(ax+b)cos2x+(cx+d)sin2x
y
∗
′
=
sin
2
x
(
−
2
a
x
−
2
b
+
c
)
+
cos
2
x
(
2
c
x
+
2
d
+
a
)
y*'=\sin 2x(-2ax-2b+c)+\cos2x(2cx+2d+a)
y∗′=sin2x(−2ax−2b+c)+cos2x(2cx+2d+a)
y
∗
′
′
=
sin
2
x
(
−
4
c
x
−
4
d
−
4
a
)
+
cos
2
x
(
−
4
a
x
−
4
b
+
4
c
)
y*''=\sin2x(-4cx-4d-4a)+\cos2x(-4ax-4b+4c)
y∗′′=sin2x(−4cx−4d−4a)+cos2x(−4ax−4b+4c)
将
y
∗
,
y
∗
′
′
y*,y*''
y∗,y∗′′代入微分方程
sin
2
x
(
−
3
c
x
−
3
d
−
4
a
)
+
cos
2
x
(
−
3
a
x
−
3
b
+
4
c
)
=
x
cos
2
x
\sin2x(-3cx-3d-4a)+\cos2x(-3ax-3b+4c)=x\cos2x
sin2x(−3cx−3d−4a)+cos2x(−3ax−3b+4c)=xcos2x
{
−
3
c
=
0
−
3
d
−
4
a
=
0
3
−
3
a
=
1
−
3
b
+
4
c
=
0
⇒
{
a
=
−
1
3
b
=
0
c
=
0
\begin{cases}-3c=0\\-3d-4a=0\\3-3a=1\\-3b+4c=0\end{cases}\Rightarrow\begin{cases}a=-\frac13\\b=0\\c=0\end{cases}
⎩
⎨
⎧−3c=0−3d−4a=03−3a=1−3b+4c=0⇒⎩
⎨
⎧a=−31b=0c=0
故
y
∗
=
−
1
3
x
cos
2
x
+
4
9
sin
2
x
y*=-\frac13x\cos2x+\frac49\sin2x
y∗=−31xcos2x+94sin2x
故
y
非齐通
=
y
齐通
+
y
∗
=
C
1
cos
x
+
C
2
sin
x
−
1
2
x
cos
2
x
+
4
9
sin
2
x
(
C
1
,
C
2
为任意常数
)
y_{\text{非齐通}}=y_{\text{齐通}}+y*=C_1\cos x+C_2\sin x-\frac12x\cos2x+\frac49\sin2x\quad(C_1,C_2\text{为任意常数})
y非齐通=y齐通+y∗=C1cosx+C2sinx−21xcos2x+94sin2x(C1,C2为任意常数)
例4:求微分方程
y
′
′
+
5
y
′
+
4
y
=
3
−
2
x
y''+5y'+4y=3-2x
y′′+5y′+4y=3−2x的通解
齐次方程,
y
′
′
+
5
y
′
+
4
y
=
0
⇒
λ
2
+
5
λ
+
4
=
0
⇒
λ
1
=
−
1
,
λ
2
=
−
4
y''+5y'+4y=0\Rightarrow \lambda^2+5\lambda+4=0\Rightarrow\lambda_1=-1,\lambda_2=-4
y′′+5y′+4y=0⇒λ2+5λ+4=0⇒λ1=−1,λ2=−4
故
y
齐通
=
C
1
e
−
x
+
C
2
e
−
4
x
y_{\text{齐通}}=C_1e^{-x}+C_2e^{-4x}
y齐通=C1e−x+C2e−4x
设
y
∗
=
x
0
(
a
x
+
b
)
=
a
x
+
b
y*=x^0(ax+b)=ax+b
y∗=x0(ax+b)=ax+b
y
∗
′
=
a
y*'=a
y∗′=a
y
∗
′
′
=
0
y*''=0
y∗′′=0
将
y
∗
,
y
∗
,
y
∗
′
′
y*,y*,y*''
y∗,y∗,y∗′′代入微分方程
y
′
′
+
5
y
′
+
4
y
=
3
−
2
x
y''+5y'+4y=3-2x
y′′+5y′+4y=3−2x中
解得
{
a
=
−
1
2
b
=
11
8
\begin{cases}a=-\frac12\\b=\frac{11}8\end{cases}
{a=−21b=811
故
y
∗
=
−
1
2
x
+
11
8
y*=-\frac12x+\frac{11}8
y∗=−21x+811
故
y
非齐通
=
y
齐通
+
y
∗
=
C
1
e
−
x
+
C
2
e
−
4
x
−
1
2
x
+
11
8
y_{\text{非齐通}}=y_{\text{齐通}}+y*=C_1e^{-x}+C_2e^{-4x}-\frac12x+\frac{11}8
y非齐通=y齐通+y∗=C1e−x+C2e−4x−21x+811