【高等数学基础进阶】函数、极限、连续-极限-part3

5. 利用泰勒公式求极限

定理(泰勒公式)
f ( x ) f(x) f(x) x = x 0 x=x_{0} x=x0 n n n阶可导,则
f ( x ) = f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) + ⋯ + f ( n ) ( x 0 ) n ! ( x − x 0 ) n + o ( x − x 0 ) n f(x)=f(x_{0})+f'(x_{0})(x-x_{0})+\cdots+\frac{f^{(n)}(x_{0})}{n!}(x-x_{0})^{n}+o(x-x_{0})^{n} f(x)=f(x0)+f(x0)(xx0)++n!f(n)(x0)(xx0)n+o(xx0)n
注意此处使用的是局部泰勒公式,即带有皮亚诺余项的泰勒公式
特别是当 x 0 = 0 x_{0}=0 x0=0
f ( x ) = f ( 0 ) + f ′ ( 0 ) x + f ′ ′ ( 0 ) 2 ! x 2 + ⋯ + f ( n ) ( 0 ) n ! x n + o ( x n ) f(x)=f(0)+f'(0)x+\frac{f''(0)}{2!}x^{2}+\cdots+\frac{f^{(n)}(0)}{n!}x^{n}+o(x^{n}) f(x)=f(0)+f(0)x+2!f′′(0)x2++n!f(n)(0)xn+o(xn)

几个常用泰勒公式
e x = 1 + x + x 2 2 ! + ⋯ + x n n ! + o ( x n ) sin ⁡ x = x − x 3 3 ! + x 5 5 ! − ⋯ + ( − 1 ) n − 1 x 2 n − 1 ( 2 n − 1 ) ! + o ( x 2 n − 1 ) cos ⁡ x = 1 − x 2 2 ! + x 4 4 ! − ⋯ + ( − 1 ) n x 2 n ( 2 n ) ! + o ( x 2 n ) ln ⁡ ( 1 + x ) = x − 1 2 x 2 + 1 3 x 3 − ⋯ + ( − 1 ) ( n − 1 ) 1 n x n + o ( x n ) ( 1 + x ) α = 1 + α x + α ( α − 1 ) 2 ! x 2 + ⋯ + α ( α − 1 ) ⋯ ( α − n + 1 ) n ! x n + o ( x n ) \begin{aligned} e^x&=1+x+\frac {x^2}{2!}+\cdots+\frac {x^n}{n!}+o(x^n)\\ \sin x&=x-\frac{x^3}{3!}+\frac{x^5}{5!}-\cdots+(-1)^{n-1}\frac{x^{2n-1}}{(2n-1)!}+o(x^{2n-1})\\ \cos x&=1-\frac{x^2}{2!}+\frac{x^4}{4!}-\cdots+(-1)^n\frac{x^{2n}}{(2n)!}+o(x^{2n})\\ \ln(1+x)&=x-\frac12x^2+\frac13x^3-\cdots+(-1)^{(n-1)}\frac1nx^n+o(x^n)\\ (1+x)^\alpha&=1+\alpha x+\frac{\alpha(\alpha-1)}{2!}x^2+\cdots+\frac{\alpha(\alpha-1)\cdots(\alpha-n+1)}{n!}x^n+o(x^n) \end{aligned} exsinxcosxln(1+x)(1+x)α=1+x+2!x2++n!xn+o(xn)=x3!x3+5!x5+(1)n1(2n1)!x2n1+o(x2n1)=12!x2+4!x4+(1)n(2n)!x2n+o(x2n)=x21x2+31x3+(1)(n1)n1xn+o(xn)=1+αx+2!α(α1)x2++n!α(α1)(αn+1)xn+o(xn)
关于 tan ⁡ x , arcsin ⁡ x , arctan ⁡ x \tan x,\arcsin x,\arctan x tanx,arcsinx,arctanx,直接用等价就可以,即
tan ⁡ x − x ∼ 1 3 x 3 ⇒ tan ⁡ x = x + x 3 3 + o ( x 3 ) x − arctan ⁡ x ∼ 1 3 x 3 ⇒ arctan ⁡ x = x − x 3 3 + o ( x 3 ) arcsin ⁡ x − x = 1 6 x 3 ⇒ arcsin ⁡ x = x + 1 6 x 3 + o ( x 3 ) \begin{aligned} \tan x-x\sim \frac{1}{3}x^{3}&\Rightarrow \tan x=x+ \frac{x^{3}}{3}+o(x^{3})\\ x-\arctan x\sim \frac{1}{3}x^{3}&\Rightarrow \arctan x=x- \frac{x^{3}}{3}+o(x^{3})\\ \arcsin x-x= \frac{1}{6}x^{3}&\Rightarrow \arcsin x=x+ \frac{1}{6}x^{3}+o(x^{3}) \end{aligned} tanxx31x3xarctanx31x3arcsinxx=61x3tanx=x+3x3+o(x3)arctanx=x3x3+o(x3)arcsinx=x+61x3+o(x3)

例27:若 lim ⁡ x → 0 ( sin ⁡ 6 x + x f ( x ) x 3 ) = 0 \lim\limits_{x\to0}(\frac{\sin 6x+xf(x)}{x^{3}})=0 x0lim(x3sin6x+xf(x))=0,则 lim ⁡ x → 0 6 + f ( x ) x 2 = \lim\limits_{x\to0}\frac{6+f(x)}{x^{2}}= x0limx26+f(x)=()

发现分子如果 sin ⁡ 6 x ∼ 6 x \sin 6x\sim6x sin6x6x则本题直接得到答案,但是 sin ⁡ 6 x ∼ 6 x \sin 6x\sim6x sin6x6x无法证明能够使用,所以考虑泰勒公式展开获得 6 x 6x 6x项,并且展开到与分母同次
0 = lim ⁡ x → 0 ( 6 x − ( 6 x ) 3 3 ! + o ( x 3 ) ) + x f ( x ) x 3 = lim ⁡ x → 0 6 + f ( x ) x 2 + lim ⁡ x → 0 − 36 x 3 + o ( x 2 ) x 3 = lim ⁡ x → 0 6 + f ( x ) x 2 − 36 \begin{aligned} 0&=\lim\limits_{x\to0}\frac{(6x- \frac{(6x)^{3}}{3!}+o(x^{3}))+xf(x)}{x^{3}}\\ &=\lim\limits_{x\to0}\frac{6+f(x)}{x^{2}}+\lim\limits_{x\to0}\frac{-36x^{3}+o(x^{2})}{x^{3}}\\ &=\lim\limits_{x\to0}\frac{6+f(x)}{x^{2}}-36 \end{aligned} 0=x0limx3(6x3!(6x)3+o(x3))+xf(x)=x0limx26+f(x)+x0limx336x3+o(x2)=x0limx26+f(x)36
因此 lim ⁡ x → 0 6 + f ( x ) x 2 = 36 \lim\limits_{x\to0}\frac{6+f(x)}{x^{2}}=36 x0limx26+f(x)=36

也可以用之前的加法法则,凑一个极限存在,同时凑出 lim ⁡ x → 0 6 + f ( x ) x 2 \lim\limits_{x\to0}\frac{6+f(x)}{x^{2}} x0limx26+f(x)形式
0 = lim ⁡ x → 0 sin ⁡ 6 x − 6 x x 3 + lim ⁡ x → 0 6 x + x f ( x ) x 3 = lim ⁡ x → 0 − 1 6 ( 6 x ) 3 x 3 + lim ⁡ x → 0 x + f ( x ) x 2 = − 36 + lim ⁡ x → 0 x + f ( x ) x 2 \begin{aligned} 0&=\lim\limits_{x\to0}\frac{\sin 6x-6x}{x^{3}}+\lim\limits_{x\to0}\frac{6x+xf(x)}{x^{3}}\\ &=\lim\limits_{x\to0}\frac{- \frac{1}{6}(6x)^{3}}{x^{3}}+\lim\limits_{x\to0}\frac{x+f(x)}{x^{2}}\\ &=-36+\lim\limits_{x\to0}\frac{x+f(x)}{x^{2}} \end{aligned} 0=x0limx3sin6x6x+x0limx36x+xf(x)=x0limx361(6x)3+x0limx2x+f(x)=36+x0limx2x+f(x)
因此 lim ⁡ x → 0 6 + f ( x ) x 2 = 36 \lim\limits_{x\to0}\frac{6+f(x)}{x^{2}}=36 x0limx26+f(x)=36

6. 利用夹逼原理求极限

常用于 n n n项和的极限

例28: lim ⁡ n → ∞ 1 + 2 n + 3 n n \lim\limits_{n\to \infty}\sqrt[n]{1+2^{n}+3^{n}} nlimn1+2n+3n

3 n n ≤ 1 + 2 n + 3 n n ≤ 3 ⋅ 3 n n \sqrt[n]{3^{n}}\leq \sqrt[n]{1+2^{n}+3^{n}}\leq \sqrt[n]{3\cdot 3^{n}} n3n n1+2n+3n n33n
又有
lim ⁡ n → ∞ 3 n n = 3 , lim ⁡ n → ∞ 3 ⋅ 3 n n = lim ⁡ n → ∞ 3 3 n = 3 \lim\limits_{n\to \infty}\sqrt[n]{3^{n}}=3,\lim\limits_{n\to \infty}\sqrt[n]{3\cdot 3^{n}}=\lim\limits_{n\to \infty}3\sqrt[n]{3}=3 nlimn3n =3,nlimn33n =nlim3n3 =3
因此 lim ⁡ n → ∞ 1 + 2 n + 3 n n = 3 \lim\limits_{n\to \infty}\sqrt[n]{1+2^{n}+3^{n}}=3 nlimn1+2n+3n =3

提出最大的,里面剩的根据 lim ⁡ n → ∞ x n \lim\limits_{n\to \infty}x^{n} nlimxn计算
原式 = lim ⁡ n → ∞ 3 ( 1 3 ) n + ( 2 3 ) n + 1 n = 3 \begin{aligned} 原式&=\lim\limits_{n\to \infty}3\sqrt[n]{(\frac{1}{3})^{n}+(\frac{2}{3})^{n}+1}=3 \end{aligned} 原式=nlim3n(31)n+(32)n+1 =3
因此 lim ⁡ n → ∞ 1 + 2 n + 3 n n = 3 \lim\limits_{n\to \infty}\sqrt[n]{1+2^{n}+3^{n}}=3 nlimn1+2n+3n =3

推广
lim ⁡ n → ∞ a 1 n + a 2 n + ⋯ + a m m n = max ⁡ { a i } , 其中 a i > 0 ( i = 1 , 2 , ⋯   , m ) \lim\limits_{n\to \infty}\sqrt[n]{a_{1}^{n}+a_{2}^{n}+\cdots+a_{m}^{m}}=\max\{a_{i}\},其中a_{i}>0(i=1,2,\cdots,m) nlimna1n+a2n++amm =max{ai},其中ai>0(i=1,2,,m)
可以用夹逼证明,思路和上面一样
如果里面有常数 m m m,可以看做 m ⋅ 1 n m\cdot 1^{n} m1n,即 m m m 1 n 1^{n} 1n相加。也可以相成抓大头,常数不重要

例29: lim ⁡ n → ∞ 2 + x n + ( x 2 2 ) n n , ( x > 0 ) \lim\limits_{n\to \infty}\sqrt[n]{2+x^{n}+(\frac{x^{2}}{2})^{n}},(x>0) nlimn2+xn+(2x2)n ,(x>0)

原式 = lim ⁡ n → ∞ 1 n + 1 n + x n + ( x 2 2 ) n n = max ⁡ { 1 , 1 , x , x 2 2 } = { 1 , 0 < x ≤ 1 x , 1 < x ≤ 2 x 2 2 , x > 2 \begin{aligned} 原式&=\lim\limits_{n\to \infty}\sqrt[n]{1^{n}+1^{n}+x^{n}+(\frac{x^{2}}{2})^{n}}\\ &=\max\{1,1,x, \frac{x^{2}}{2}\}\\ &=\begin{cases} 1,0<x\leq1 \\ x,1<x\leq2 \\ \frac{x^{2}}{2},x>2 \end{cases} \end{aligned} 原式=nlimn1n+1n+xn+(2x2)n =max{1,1,x,2x2}= 1,0<x1x,1<x22x2,x>2

7. 利用单调有界准则求极限

常用不等式 2 a b ≤ a 2 + b 2 2ab\leq a^{2}+b^{2} 2aba2+b2

  1. 证明存在(单调、有界)
  2. 求极限

例30:设 x 1 > 0 , x n + 1 = 1 2 ( x n + 1 x n ) , n = 1 , 2 , ⋯ x_{1}>0,x_{n+1}=\frac{1}{2}(x_{n}+ \frac{1}{x_{n}}),n=1,2,\cdots x1>0,xn+1=21(xn+xn1),n=1,2,,求极限 lim ⁡ n → ∞ x n \lim\limits_{n\to \infty}x_{n} nlimxn

x n > 0 x_{n}>0 xn>0,且
x n + 1 = 1 2 ( x n + 1 x n ) ≥ 1 2 ⋅ 2 x n 1 x n = 1 x_{n+1}= \frac{1}{2}(x_{n}+ \frac{1}{x_{n}})\geq \frac{1}{2}\cdot2\sqrt{x_{n}} \frac{1}{\sqrt{x_{n}}}=1 xn+1=21(xn+xn1)212xn xn 1=1
可知
x n + 1 − x n = 1 2 ( 1 x n − x n ) = 1 2 ⋅ 1 − x n 2 x n ≤ 0 ( 用乘法同理 ) x_{n+1}-x_{n}=\frac{1}{2}( \frac{1}{x_{n}}-x_{n})=\frac{1}{2}\cdot \frac{1-x_{n}^{2}}{x_{n}}\leq0(用乘法同理) xn+1xn=21(xn1xn)=21xn1xn20(用乘法同理)
可得 lim ⁡ n → ∞ x n \lim\limits_{n\to \infty}x_{n} nlimxn存在,设 lim ⁡ n → ∞ x n = a \lim\limits_{n\to \infty}x_{n}=a nlimxn=a
a = 1 2 ( a + 1 a ) (1) a=\frac{1}{2}(a+ \frac{1}{a})\tag{1} a=21(a+a1)(1)
可得 lim ⁡ n → ∞ x n = 1 \lim\limits_{n\to \infty}x_{n}=1 nlimxn=1

此处虽然说求极限,但是不能跳过证明极限存在直接求极限,因为 ( 1 ) (1) (1)不一定存在,该式是由
x n + 1 = 1 2 ( x n + 1 x n ) x_{n+1}=\frac{1}{2}(x_{n}+ \frac{1}{x_{n}}) xn+1=21(xn+xn1)
两边同时取极限的得到的,但极限如不证明存在,则不一定成立
x 1 = 1 , x n + 1 = 1 − x n x_{1}=1,x_{n+1}=1-x_{n} x1=1,xn+1=1xn,由递推关系可知,该数列为 x n = { 1 , n 为奇数 0 , n 为偶数 x_{n}=\begin{cases}1,n为奇数\\0,n为偶数\end{cases} xn={1,n为奇数0,n为偶数,但如果直接 a = 1 − a a=1-a a=1a,得极限为 1 2 \frac{1}{2} 21,显然错误

8. 利用定积分定义求极限(见第五章)

无穷小量阶的比较

例31:当 x → 0 x\to0 x0时, α ( x ) = k x 2 \alpha(x)=kx^{2} α(x)=kx2,与 β ( x ) = 1 + x arcsin ⁡ x − cos ⁡ x \beta(x)=\sqrt{1+x\arcsin x}-\sqrt{\cos x} β(x)=1+xarcsinx cosx 是等价无穷小,则 k = k= k=()

见到两二次根相减/相加时,考虑根式有理化

1 = lim ⁡ x → 0 1 + x arcsin ⁡ x − cos ⁡ x k x 2 = 1 k lim ⁡ x → 0 1 + x arcsin ⁡ x − cos ⁡ x x 2 1 + x arcsin ⁡ x + cos ⁡ x = 1 2 k lim ⁡ x → 0 1 + x arcsin ⁡ x − cos ⁡ x x 2 = 1 2 k ( lim ⁡ x → 0 x arcsin ⁡ x x 2 + lim ⁡ x → 0 1 − cos ⁡ x x 2 ) = 3 4 k \begin{aligned} 1&=\lim\limits_{x\to0}\frac{\sqrt{1+x\arcsin x}-\sqrt{\cos x}}{kx^{2}}\\ &=\frac{1}{k}\lim\limits_{x\to0}\frac{1+x\arcsin x-\cos x}{x^{2}\sqrt{1+x\arcsin x}+\sqrt{\cos x}}\\ &=\frac{1}{2k}\lim\limits_{x\to0}\frac{1+x\arcsin x-\cos x}{x^{2}}\\ &=\frac{1}{2k}(\lim\limits_{x\to0}\frac{x\arcsin x}{x^{2}}+\lim\limits_{x\to0}\frac{1-\cos x}{x^{2}})\\ &=\frac{3}{4k} \end{aligned} 1=x0limkx21+xarcsinx cosx =k1x0limx21+xarcsinx +cosx 1+xarcsinxcosx=2k1x0limx21+xarcsinxcosx=2k1(x0limx2xarcsinx+x0limx21cosx)=4k3
k = 3 4 k=\frac{3}{4} k=43

对于其他次根号,一般使用 ( 1 + x ) α − 1 ∼ α x (1+x)^{\alpha}-1\sim \alpha x (1+x)α1αx

1 = lim ⁡ x → 0 ( 1 + x arcsin ⁡ x − 1 ) − ( cos ⁡ x − 1 ) k x 2 = lim ⁡ x → 0 ( 1 2 x arcsin ⁡ x ) − ( − 1 2 2 x 2 ) k x 2 = lim ⁡ x → 0 1 2 x 2 + 1 4 x 2 k x 2 \begin{aligned} 1&=\lim\limits_{x\to0}\frac{(\sqrt{1+x\arcsin x}-1)-(\sqrt{\cos x}-1)}{kx^{2}}\\ &=\lim\limits_{x\to0}\frac{(\frac{1}{2}x\arcsin x)-(- \frac{\frac{1}{2}}{2}x^{2})}{kx^{2}}\\ &=\lim\limits_{x\to0}\frac{\frac{1}{2}x^{2}+ \frac{1}{4}x^{2}}{kx^{2}}\\ \end{aligned} 1=x0limkx2(1+xarcsinx 1)(cosx 1)=x0limkx2(21xarcsinx)(221x2)=x0limkx221x2+41x2
k = 3 4 k=\frac{3}{4} k=43

形式相同的根号相减为 0 0 0(此时 ξ \xi ξ显然是确定的值),还可以考虑拉格朗日中值定理

1 = lim ⁡ x → 0 1 + x arcsin ⁡ x − cos ⁡ x k x 2 = lim ⁡ x → 0 1 2 ξ ( 1 + x arcsin ⁡ x − cos ⁡ x ) k x 2 = 1 2 k lim ⁡ x → 0 1 − cos ⁡ x + x arcsin ⁡ x x 2 = 1 2 k ( 1 2 + 1 ) \begin{aligned} 1&=\lim\limits_{x\to0}\frac{\sqrt{1+x\arcsin x}-\sqrt{\cos x}}{kx^{2}}\\ &=\lim\limits_{x\to0}\frac{\frac{1}{2\sqrt{\xi}}(1+x\arcsin x-\cos x)}{kx^{2}}\\ &=\frac{1}{2k}\lim\limits_{x\to0}\frac{1-\cos x+x\arcsin x}{x^{2}}\\ &=\frac{1}{2k}(\frac{1}{2}+1) \end{aligned} 1=x0limkx21+xarcsinx cosx =x0limkx22ξ 1(1+xarcsinxcosx)=2k1x0limx21cosx+xarcsinx=2k1(21+1)
k = 3 4 k=\frac{3}{4} k=43

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值