【线性代数基础进阶】矩阵-part2

三、初等变换、初等矩阵

矩阵的初等行变换

  • 用非 0 0 0常数 k k k A A A某行的每个元素,即倍乘
  • 互换 A A A中两行元素的位置,即互换
  • A A A中某行所有元素的 k k k倍加到另一行的对应元上,即倍加

初等矩阵

单位矩阵经过一次初等变换所得到的矩阵称为初等矩阵

初等矩阵 P P P左乘矩阵 A A A,其乘积 P A PA PA就是矩阵 A A A作一次与 P P P同样的行变换
初等矩阵 P P P右乘矩阵 A A A,其乘积 A P AP AP就是矩阵 A A A作一次与 P P P同样的列变换

初等矩阵的逆

( 1 0 0 2 1 0 0 0 1 ) ( 1 0 0 − 2 1 0 0 0 1 ) = ( 1 0 0 0 1 0 0 0 1 ) \begin{pmatrix}1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 1\end{pmatrix}\begin{pmatrix}1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1\end{pmatrix}=\begin{pmatrix}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{pmatrix} 120010001 120010001 = 100010001
初等矩阵若为倍加矩阵,则其逆矩阵为将其倍加的元改为其相反数,例如
( 1 0 0 2 1 0 0 0 1 ) − 1 = ( 1 0 0 − 2 1 0 0 0 1 ) \begin{pmatrix} 1 & 0 & 0 \\ \boxed{2} & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}^{-1}=\begin{pmatrix} 1 & 0 & 0 \\ \boxed{-2} & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} 120010001 1= 120010001

( 0 1 0 1 0 0 0 0 1 ) ( 0 1 0 1 0 0 0 0 1 ) = ( 1 0 0 0 1 0 0 0 1 ) \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}\begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}=\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} 010100001 010100001 = 100010001
初等矩阵若为互换矩阵,则其逆矩阵为本身,例如
( 0 1 0 1 0 0 0 0 1 ) − 1 = ( 0 1 0 1 0 0 0 0 1 ) \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}^{-1}=\begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} 010100001 1= 010100001

( 1 0 0 0 5 0 0 0 1 ) ( 1 0 0 0 1 5 0 0 0 1 ) = ( 1 0 0 0 1 0 0 0 1 ) \begin{pmatrix} 1 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 1 \end{pmatrix}\begin{pmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{5} & 0 \\ 0 & 0 & 1 \end{pmatrix}=\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} 100050001 1000510001 = 100010001
初等矩阵若为倍乘矩阵,则其逆矩阵为倍乘的元的倒数,例如
( 1 0 0 0 5 0 0 0 1 ) − 1 = ( 1 0 0 0 1 5 0 0 0 1 ) \begin{pmatrix} 1 & 0 & 0 \\ 0 & \boxed{5} & 0 \\ 0 & 0 & 1 \end{pmatrix}^{-1}=\begin{pmatrix} 1 & 0 & 0 \\ 0 & \boxed{\frac{1}{5}} & 0 \\ 0 & 0 & 1 \end{pmatrix} 100050001 1= 1000510001

初等矩阵均可逆,且其逆是同一类型的初等矩阵

例:已知 a i j ≠ 0 a_{ij}\ne0 aij=0,如果 ( a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ) P = ( a 11 2 a 12 a 12 + a 13 a 11 a 21 a 22 a 22 + a 23 a 11 a 31 a 32 a 32 + a 33 ) \begin{pmatrix}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{pmatrix}P=\begin{pmatrix}a_{11}^{2} & a_{12} & a_{12}+a_{13} \\ a_{11}a_{21} & a_{22} & a_{22}+a_{23} \\ a_{11}a_{31} & a_{32} & a_{32}+a_{33}\end{pmatrix} a11a21a31a12a22a32a13a23a33 P= a112a11a21a11a31a12a22a32a12+a13a22+a23a32+a33 ,则 P = ( ) P=() P=()

经过第一列乘 a 11 a_{11} a11倍,第三列加第二列,因此
P = ( a 11 0 0 0 1 1 0 0 1 ) P=\begin{pmatrix} a_{11} & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} P= a1100010011

例:已知 A = ( a i j ) A=(a_{ij}) A=(aij)是三阶矩阵, ∣ A ∣ = 2 |A|=2 A=2,把矩阵 A A A的第二行的 − 5 -5 5倍加到第三行得到矩阵 B B B,则 ( 3 B A ∗ ) − 1 = ( ) (3BA^{*})^{-1}=() (3BA)1=()

由题意 B = P A B=PA B=PA,且
P = ( 1 0 0 0 1 0 0 − 5 1 ) P=\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -5 & 1 \end{pmatrix} P= 100015001

3 B A ∗ = 3 P A A ∗ = 3 P ( ∣ A ∣ E ) = 6 P 3BA^{*}=3PAA^{*}=3P(|A|E)=6P 3BA=3PAA=3P(AE)=6P

( 3 B A ∗ ) − 1 = ( 6 P ) − 1 = 1 6 P − 1 = 1 6 ( 1 0 0 0 1 0 0 5 1 ) (3BA^{*})^{-1}=(6P)^{-1}=\frac{1}{6}P^{-1}=\frac{1}{6}\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 5 & 1 \end{pmatrix} (3BA)1=(6P)1=61P1=61 100015001

行阶梯矩阵

A A A m × n m\times n m×n矩阵,若满足

  • 矩阵如有零行,则零行都在矩阵的底部
  • 每个非零行的主元(即该行最左边的第 1 1 1个非 0 0 0元)所在列的下面的元素都是 0 0 0

则称 A A A为行阶梯矩阵

行最简矩阵

A A A m × n m\times n m×n矩阵,若 A A A是行阶梯矩阵,且还满足

  • 非零行的主元都是 1 1 1,且主元所在列的其他元素都是 0 0 0

则称 A A A为行最简矩阵

矩阵等价

矩阵 A A A经过有限次初等变换得到矩阵 B B B就称矩阵 A A A与矩阵 B B B等价,记作 A = ∼ B A\overset{\sim}{=}B A=B

矩阵 A , B A,B A,B都是 m × n m\times n m×n的矩阵,则 A , B A,B A,B等价 ⇔ r ( A ) = r ( B ) \Leftrightarrow r(A)=r(B) r(A)=r(B)

A A A m × n m\times n m×n矩阵,则存在 m m m姐可逆矩阵 P P P n n n阶可逆矩阵 A A A,使
P A Q = ( E r O O O ) PAQ=\begin{pmatrix} E_{r} & O \\ O & O \end{pmatrix} PAQ=(ErOOO)

例:已知 A = ( 1 − 1 − 1 3 2 − 1 − 3 1 3 2 − 5 2 ) A=\begin{pmatrix}1 & -1 & -1 & 3 \\ 2 & -1 & -3 & 1 \\ 3 & 2 & -5 & 2\end{pmatrix} A= 123112135312 化其为行最简

A = ( 1 − 1 − 1 3 2 − 1 − 3 1 3 2 − 5 2 ) → ( 1 − 1 − 1 3 0 1 − 1 − 5 0 5 − 2 − 7 ) → ( 1 0 − 2 − 2 0 1 − 1 − 5 0 0 3 18 ) 从左到右各列上下同时开工 → ( 1 0 − 2 − 2 0 1 − 1 − 5 0 0 1 6 ) 如果第一个非零元不是 1 ,先化成 1 → ( 1 0 0 10 0 1 0 1 0 0 1 6 ) \begin{aligned} A&=\begin{pmatrix}1 & -1 & -1 & 3 \\ 2 & -1 & -3 & 1 \\ 3 & 2 & -5 & 2\end{pmatrix}\rightarrow \begin{pmatrix} 1 & -1 & -1 & 3 \\ 0 & 1 & -1 & -5 \\ 0 & 5 & -2 & -7 \end{pmatrix}\\ &\rightarrow \begin{pmatrix} 1 & 0 & -2 & -2 \\ 0 & 1 & -1 & -5 \\ 0 & 0 & 3 & 18 \end{pmatrix}从左到右各列上下同时开工\\ &\rightarrow \begin{pmatrix} 1 & 0 & -2 & -2 \\ 0 & 1 & -1 & -5 \\ 0 & 0 & 1 & 6 \end{pmatrix}如果第一个非零元不是1,先化成1\\ &\rightarrow \begin{pmatrix} 1 & 0 & 0 & 10 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 6 \end{pmatrix} \end{aligned} A= 123112135312 100115112357 1000102132518 从左到右各列上下同时开工 100010211256 如果第一个非零元不是1,先化成1 1000100011016

对于已知 P A = B , A , B PA=B,A,B PA=B,A,B,求 P P P的题
已知
A ⟶ 行变换 B A\overset{行变换}{\longrightarrow}B A行变换B
即存在
P τ ⋯ P 2 P 1 A = B P_{\tau}\cdots P_{2}P_{1}A=B PτP2P1A=B
P = P τ ⋯ P 2 P 1 P=P_{\tau}\cdots P_{2}P_{1} P=PτP2P1
P τ ⋯ P 2 P 1 E = P P_{\tau}\cdots P_{2}P_{1}E=P PτP2P1E=P
A → B A\rightarrow B AB同时 E → P E\rightarrow P EP
( A , E ) ⟶ 行变换 ( B , P ) (A,E)\overset{行变换}{\longrightarrow}(B,P) (A,E)行变换(B,P)

对于上一道例题,要求使得 A A A变为行最简的 P P P

( A ∣ E ) = ( 1 − 1 − 1 3 1 2 − 1 − 3 1 1 3 2 − 5 2 1 ) → ( 1 − 1 − 1 3 1 0 1 − 1 − 5 − 2 1 0 5 − 2 − 7 − 3 1 ) → ( 1 − 1 − 1 3 1 0 1 − 1 − 5 − 2 1 0 0 3 18 7 − 5 1 ) → ( 1 0 − 2 − 2 − 1 1 1 − 1 − 5 − 2 1 1 6 7 3 − 5 3 1 3 ) → ( 1 0 0 10 11 3 − 7 3 2 3 0 1 0 1 1 3 − 2 3 1 3 0 0 1 6 7 3 − 5 3 1 3 ) \begin{aligned} (A|E)&=\begin{pmatrix} 1 & -1 & -1 & 3 & 1 & & \\ 2 & -1 & -3 & 1 & & 1 & \\ 3 & 2 & -5 & 2 & & & 1 \end{pmatrix}\\ &\rightarrow \begin{pmatrix} 1 & -1 & -1 & 3 & 1 & & \\ 0 & 1 & -1 & -5 & -2 & 1 & \\ 0 & 5 & -2 & -7 & -3 & & 1 \end{pmatrix}\\ &\rightarrow \begin{pmatrix} 1 & -1 & -1 & 3 & 1 & & \\ 0 & 1 & -1 & -5 & -2 & 1 & \\ 0 & 0 & 3 & 18 & 7 & -5 & 1 \end{pmatrix}\\ &\rightarrow \begin{pmatrix} 1 & 0 & -2 & -2 & -1 & 1 & \\ & 1 & -1 & -5 & -2 & 1 & \\ & & 1 & 6 & \frac{7}{3} & - \frac{5}{3} & \frac{1}{3} \end{pmatrix}\\ & \rightarrow \begin{pmatrix} 1 & 0 & 0 & 10 & \frac{11}{3} & - \frac{7}{3} & \frac{2}{3} \\ 0 & 1 & 0 & 1 & \frac{1}{3} & - \frac{2}{3} & \frac{1}{3} \\ 0 & 0 & 1 & 6 & \frac{7}{3} & - \frac{5}{3} & \frac{1}{3} \end{pmatrix} \end{aligned} (AE)= 123112135312111 10011511235712311 1001101133518127151 1012112561237113531 10001000110163113137373235323131

四、分块矩阵

分四块( A B , A n , A − 1 AB,A^{n},A^{-1} AB,An,A1),列分块、行分块(方程组的解,向量,阶)

分四块

对矩阵适当的分块处理,有以下的运算法则
( A 1 A 2 A 3 A 4 ) + ( B 1 B 2 B 3 B 4 ) = ( A 1 + B 1 A 2 + B 2 A 3 + B 3 A 4 + B 4 ) ( A B C D ) ( X Y Z W ) = ( A X + B Z A Y + B W C X + D Z C Y + D W ) ( A B C D ) T = ( A T C T B T D T ) \begin{gathered} \begin{pmatrix} A_{1} & A_{2} \\ A_{3} & A_{4} \end{pmatrix}+\begin{pmatrix} B_{1} & B_{2} \\ B_{3} & B_{4} \end{pmatrix}=\begin{pmatrix} A_{1}+B_{1} & A_{2}+B_{2} \\ A_{3}+B_{3} & A_{4}+B_{4} \end{pmatrix}\\ \begin{pmatrix} A & B \\ C & D \end{pmatrix}\begin{pmatrix} X & Y \\ Z & W \end{pmatrix}=\begin{pmatrix} AX+BZ & AY+BW \\ CX+DZ & CY+DW \end{pmatrix}\\ \begin{pmatrix} A & B \\ C & D \end{pmatrix}^{T}=\begin{pmatrix} A^{T} & C^{T} \\ B^{T} & D^{T} \end{pmatrix} \end{gathered} (A1A3A2A4)+(B1B3B2B4)=(A1+B1A3+B3A2+B2A4+B4)(ACBD)(XZYW)=(AX+BZCX+DZAY+BWCY+DW)(ACBD)T=(ATBTCTDT)
如果 B , C B,C B,C都是方阵
( B O O C ) n = ( B n O O C n ) \begin{pmatrix} B & O \\ O & C \end{pmatrix}^{n}=\begin{pmatrix} B^{n} & O \\ O & C^{n} \end{pmatrix} (BOOC)n=(BnOOCn)
如果 B , C B,C B,C是可逆方阵
( B O O C ) − 1 = ( B − 1 O O C − 1 ) , ( O B C O ) − 1 = ( O C − 1 B − 1 O ) \begin{pmatrix} B & O \\ O & C \end{pmatrix}^{-1}=\begin{pmatrix} B^{-1} & O \\ O & C^{-1} \end{pmatrix},\begin{pmatrix} O & B \\ C & O \end{pmatrix}^{-1}=\begin{pmatrix} O & C^{-1} \\ B^{-1} & O \end{pmatrix} (BOOC)1=(B1OOC1),(OCBO)1=(OB1C1O)

行、列分块

A B = C AB=C AB=C
( γ 1 γ 2 γ 3 ) ( b 11 b 12 b 13 b 21 b 22 b 23 b 31 b 32 b 33 ) = ( δ 1 δ 2 δ 3 ) \begin{pmatrix} \gamma_{1} & \gamma_{2} & \gamma_{3} \end{pmatrix}\begin{pmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{pmatrix}=\begin{pmatrix} \delta_{1} & \delta_{2} & \delta_{3} \end{pmatrix} (γ1γ2γ3) b11b21b31b12b22b32b13b23b33 =(δ1δ2δ3)
对应行列式
{ b 11 γ 1 + b 21 γ 2 + b 31 γ 3 = δ 1 b 12 γ 1 + b 22 γ 2 + b 32 γ 3 = δ 2 b 13 γ 1 + b 23 γ 2 + b 33 γ 3 = δ 3 \begin{cases} b_{11}\gamma_{1}+b_{21}\gamma_{2}+b_{31}\gamma_{3}=\delta_{1} \\ b_{12}\gamma_{1}+b_{22}\gamma_{2}+b_{32}\gamma_{3}=\delta_{2} \\ b_{13}\gamma_{1}+b_{23}\gamma_{2}+b_{33}\gamma_{3}=\delta_{3} \\ \end{cases} b11γ1+b21γ2+b31γ3=δ1b12γ1+b22γ2+b32γ3=δ2b13γ1+b23γ2+b33γ3=δ3
C = A B C=AB C=AB的列向量可由 A A A的列向量线性表出
同理
( a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ) ( α 1 α 2 α 3 ) = ( β 1 β 2 β 3 ) \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}\begin{pmatrix} \alpha_{1} \\ \alpha_{2} \\ \alpha_{3} \end{pmatrix}=\begin{pmatrix} \beta_{1} \\ \beta_{2} \\ \beta_{3} \end{pmatrix} a11a21a31a12a22a32a13a23a33 α1α2α3 = β1β2β3
对应行列式
{ a 11 α 1 + a 12 α 2 + a 13 α 3 = β 1 a 21 α 1 + a 22 α 2 + a 23 α 3 = β 2 a 31 α 1 + a 32 α 2 + a 33 α 3 = β 3 \begin{cases} a_{11}\alpha_{1}+a_{12}\alpha_{2}+a_{13}\alpha_{3}=\beta_{1} \\ a_{21}\alpha_{1}+a_{22}\alpha_{2}+a_{23}\alpha_{3}=\beta _{2} \\ a_{31}\alpha_{1}+a_{32}\alpha_{2}+a_{33}\alpha_{3}=\beta _{3} \\ \end{cases} a11α1+a12α2+a13α3=β1a21α1+a22α2+a23α3=β2a31α1+a32α2+a33α3=β3
C = A B C=AB C=AB的行向量可由 B B B的行向量线性表出

如果 A A A可逆, A B = C → A − 1 C = B AB=C\rightarrow A^{-1}C=B AB=CA1C=B
B B B的行向量可由 C C C的行向量线性表出
如果 B B B可逆, A B = C → C B − 1 = A AB=C\rightarrow CB^{-1}=A AB=CCB1=A
A A A的列向量可由 C C C的列向量线性表出

如果 A B = C AB=C AB=C
A ( β 1 β 2 β 3 ) = ( γ 1 γ 2 γ 3 ) ( A β 1 A β 2 A β 3 ) = ( γ 1 γ 2 γ 3 ) \begin{aligned} A \begin{pmatrix} \beta_{1} & \beta_{2} & \beta_{3} \end{pmatrix}&=\begin{pmatrix} \gamma_{1} & \gamma_{2} & \gamma_{3} \end{pmatrix}\\ \begin{pmatrix} A \beta_{1} & A \beta_{2} & A \beta_{3} \end{pmatrix}&=\begin{pmatrix} \gamma_{1} & \gamma_{2} & \gamma_{3} \end{pmatrix} \end{aligned} A(β1β2β3)(Aβ1Aβ2Aβ3)=(γ1γ2γ3)=(γ1γ2γ3)

A β 1 = γ 1 , A β 2 = γ 2 , A β 3 = γ 3 A \beta_{1}=\gamma_{1},A \beta_{2}=\gamma_{2},A \beta_{3}=\gamma_{3} Aβ1=γ1,Aβ2=γ2,Aβ3=γ3
可知
β 1 \beta_{1} β1是方程组 A x = γ 1 Ax=\gamma_{1} Ax=γ1的解
β 2 \beta_{2} β2是方程组 A x = γ 2 Ax=\gamma_{2} Ax=γ2的解
β 3 \beta_{3} β3是方程组 A x = γ 3 Ax=\gamma_{3} Ax=γ3的解

如果 A B = O AB=O AB=O
A ( β 1 β 2 β 3 ) = ( O O O a ) A \begin{pmatrix} \beta_{1} & \beta_{2} & \beta_{3} \end{pmatrix}=\begin{pmatrix} O & O & Oa \end{pmatrix} A(β1β2β3)=(OOOa)
可知 β 1 , β 2 , β 3 \beta_{1},\beta_{2},\beta_{3} β1,β2,β3 A x = O Ax=O Ax=O的解

例:已知 X = A B A X=ABA X=ABA,其中 A = ( 1 0 0 1 0 1 1 0 0 1 − 1 0 1 0 0 − 1 ) , B = ( 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 ) A=\begin{pmatrix}1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & -1 & 0 \\ 1 & 0 & 0 & -1\end{pmatrix},B=\begin{pmatrix}0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0\end{pmatrix} A= 1001011001101001 ,B= 0001001001001000 ,则 X = ( ) X=() X=()

本题直接求也行

A = ( 1 0 0 1 0 1 1 0 0 1 − 1 0 1 0 0 − 1 ) = ( E C C − E ) , B = ( 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 ) = ( O C C O ) A=\left(\begin{array}{cc:cc} 1&0&0&1\\ 0&1&1&0\\\hdashline 0&1&-1&0\\ 1&0&0&-1 \end{array}\right)=\begin{pmatrix} E & C \\ C & -E \end{pmatrix},B=\left(\begin{array}{cc:cc}0&0&0&1\\ 0&0&1&0\\\hdashline 0&1&0&0\\ 1&0&0&0\end{array}\right)=\begin{pmatrix} O & C \\ C & O \end{pmatrix} A= 1001011001101001 =(ECCE),B= 0001001001001000 =(OCCO)

X = ( E C C − E ) ( O C C O ) ( E C C − E ) = ( E C − C E ) ( E C C − E ) = ( 2 E O O − 2 E ) \begin{aligned} X&=\begin{pmatrix} E & C \\ C & -E \end{pmatrix}\begin{pmatrix} O & C \\ C & O \end{pmatrix}\begin{pmatrix} E & C \\ C & -E \end{pmatrix}\\ &=\begin{pmatrix} E & C \\ -C & E \end{pmatrix}\begin{pmatrix} E & C \\ C & -E \end{pmatrix}\\ &=\begin{pmatrix} 2E & O \\ O & -2E \end{pmatrix} \end{aligned} X=(ECCE)(OCCO)(ECCE)=(ECCE)(ECCE)=(2EOO2E)
可得 X = ( 2 2 − 2 − 2 ) X=\begin{pmatrix}2 & & & \\ & 2 & & \\ & & -2 & \\ & & & -2\end{pmatrix} X= 2222

例:设 A = ( 1 2 − 2 4 t 3 3 − 1 1 ) A=\begin{pmatrix}1 & 2 & -2 \\ 4 & t & 3 \\ 3 & -1 & 1\end{pmatrix} A= 1432t1231 B B B为三阶非零矩阵,且 A B = O AB=O AB=O,则 t = ( ) t=() t=()

由于 A B = O AB=O AB=O
A B = A ( β 1 β 2 β 3 ) = ( A β 1 A β 2 A β 3 ) = ( O O O ) AB=A \begin{pmatrix} \beta_{1} & \beta_{2} & \beta_{3} \end{pmatrix}=\begin{pmatrix} A \beta_{1} & A \beta_{2} & A \beta_{3} \end{pmatrix}=\begin{pmatrix} O & O & O \end{pmatrix} AB=A(β1β2β3)=(Aβ1Aβ2Aβ3)=(OOO)
可知 A β 1 = O , A β 2 = O , A β 3 = O A \beta_{1}=O,A \beta_{2}=O,A \beta_{3}=O Aβ1=O,Aβ2=O,Aβ3=O
因此, β 1 , β 2 , β 3 \beta_{1},\beta_{2},\beta_{3} β1,β2,β3 A X = O AX=O AX=O的解
又因为 B ≠ 0 B\ne0 B=0,故 A X = O AX=O AX=O存在非 0 0 0解,根据克拉默法则
∣ A ∣ = ∣ 1 2 − 2 4 t 3 3 − 1 1 ∣ = 5 ( t + 3 ) = 0 |A|=\begin{vmatrix} 1 & 2 & -2 \\ 4 & t & 3 \\ 3 & -1 & 1 \end{vmatrix}=5(t+3)=0 A= 1432t1231 =5(t+3)=0
解得 t = − 3 t=-3 t=3

例:计算 ( 1 2 3 4 5 6 7 8 9 ) ( 2 0 0 0 1 − 1 1 0 1 ) \begin{pmatrix}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{pmatrix}\begin{pmatrix}2 & 0 & 0 \\ 0 & 1 & -1 \\ 1 & 0 & 1\end{pmatrix} 147258369 201010011

简单的矩阵乘复杂的矩阵,可以考虑复杂的进行分块,复杂的在左面进行列分块,在右面进行行分块

原式 = ( α 1 α 2 α 3 ) ( 2 0 0 0 1 − 1 1 0 1 ) = ( 2 α 1 + α 3 α 2 − α 2 + α 3 ) = ( 5 2 1 14 5 1 23 8 1 ) \begin{aligned} 原式&=\begin{pmatrix} \alpha_{1} & \alpha_{2} & \alpha_{3} \end{pmatrix}\begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & -1 \\ 1 & 0 & 1 \end{pmatrix}\\ &=\begin{pmatrix} 2\alpha_{1}+\alpha_{3} & \alpha_{2} & -\alpha_{2}+\alpha_{3} \end{pmatrix}\\ &=\begin{pmatrix} 5 & 2 & 1 \\ 14 & 5 & 1 \\ 23 & 8 & 1 \end{pmatrix} \end{aligned} 原式=(α1α2α3) 201010011 =(2α1+α3α2α2+α3)= 51423258111

五、方阵的行列式

  • ∣ A T ∣ = ∣ A ∣ |A^{T}|=|A| AT=A
  • ∣ k A ∣ = k n ∣ A ∣ |kA|=k^{n}|A| kA=knA
  • ∣ A B ∣ = ∣ A ∣ ⋅ ∣ B ∣ |AB|=|A|\cdot|B| AB=AB
    ∣ A 2 ∣ = ∣ A ∣ 2 |A^{2}|=|A|^{2} A2=A2
  • ∣ A ∗ ∣ = ∣ A ∣ n − 1 |A^{*}|=|A|^{n-1} A=An1
  • ∣ A − 1 ∣ = ∣ A ∣ − 1 = 1 ∣ A ∣ |A^{-1}|=|A|^{-1}=\frac{1}{|A|} A1=A1=A1
  • ∣ A O ∗ B ∣ = ∣ A ∗ O B ∣ = ∣ A ∣ ⋅ ∣ B ∣ \begin{vmatrix}A&O\\ *&B\end{vmatrix}=\begin{vmatrix}A&*\\O&B\end{vmatrix}=|A|\cdot|B| AOB = AOB =AB
    ∣ O A B ∗ ∣ = ∣ ∗ A B O ∣ = ( − 1 ) m n ∣ A ∣ ⋅ ∣ B ∣ \begin{vmatrix}O&A\\B&*\end{vmatrix}=\begin{vmatrix}*&A\\B&O\end{vmatrix}=(-1)^{mn}|A|\cdot|B| OBA = BAO =(1)mnAB
  • 如果 A ∼ B A\sim B AB,则 ∣ A ∣ = ∣ B ∣ , ∣ A + k E ∣ = ∣ B + k E ∣ |A|=|B|,|A+kE|=|B+kE| A=B,A+kE=B+kE,一般 ∣ A + B ∣ ≠ ∣ A ∣ + ∣ B ∣ |A+B|\ne|A|+|B| A+B=A+B

例: A , B A,B A,B n n n阶矩阵, ∣ A ∣ = 2 , ∣ B ∣ = − 3 |A|=2,|B|=-3 A=2,B=3,则

∣ A ∗ B − 1 − A − 1 B ∗ ∣ = ( ) |A^{*}B^{-1}-A^{-1}B^{*}|=() AB1A1B=()
∣ A ∗ B − 1 − A − 1 B ∗ ∣ = ∣ ∣ A ∣ A − 1 B − 1 − ∣ B ∣ A − 1 B − 1 ∣ = ∣ 5 A − 1 B − 1 ∣ = − 5 n 6 \begin{aligned} |A^{*}B^{-1}-A^{-1}B^{*}|&=||A|A^{-1}B^{-1}-|B|A^{-1}B^{-1}|\\ &=|5A^{-1}B^{-1}|\\ &=-\frac{5^{n}}{6} \end{aligned} AB1A1B=∣∣AA1B1BA1B1=∣5A1B1=65n

∣ O A T B ∗ 2 B ∣ = ( ) \begin{vmatrix}O&A^{T}\\B^{*}&2B\end{vmatrix}=() OBAT2B =()
∣ O A T B ∗ 2 B ∣ = ( − 1 ) n ⋅ n ∣ A T ∣ ∣ B ∗ ∣ = ( − 1 ) n 2 + n − 1 ⋅ 2 ⋅ 3 n − 1 = − 2 ⋅ 3 n − 1 \begin{aligned} \begin{vmatrix}O&A^{T}\\B^{*}&2B\end{vmatrix}&=(-1)^{n\cdot n}|A^{T}||B^{*}|\\ &=(-1)^{n^{2}+n-1}\cdot 2\cdot 3^{n-1}\\ &=-2\cdot3^{n-1} \end{aligned} OBAT2B =(1)nnAT∣∣B=(1)n2+n123n1=23n1

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值