【概率论基础进阶】随机变量及其分布-随机变量及其分布函数

本文详细介绍了离散型和连续型随机变量的概念,包括分布律、分布函数及其性质。离散型随机变量的概率分布通过概率质量函数给出,而连续型随机变量则通过概率密度函数描述。分布函数的性质包括非负、单调不减、极限值为0和1,以及右连续性。此外,还讨论了如何利用这些性质解决相关问题。
摘要由CSDN通过智能技术生成

一、分布律

定义:在样本空间 Ω \Omega Ω上的实值函数 X = X ( ω ) X=X(\omega) X=X(ω),称 X ( ω ) , ω ∈ Ω X(\omega),\omega \in \Omega X(ω),ωΩ,称 X ( ω ) X(\omega) X(ω)为随机变量,简记 X X X
注: X ( ω ) X(\omega) X(ω)的定义域是 Ω \Omega Ω,常用 X , Y , Z X,Y,Z X,Y,Z等表示随机变量

定义:如果一个随机变量的可能取值是有限多个或可数无穷多个,则称它为离散型随机变量

定义:设离散型随机变量 X X X的可能取值是 x 1 , x 2 , ⋯   , x n , ⋯ x_{1},x_{2},\cdots,x_{n},\cdots x1,x2,,xn, X X X取各可能值的概率为
P { X = x k } = p k , k = 1 , 2 , ⋯ P \left\{X=x_{k}\right\}=p_{k},k=1,2,\cdots P{ X=xk}=pk,k=1,2,
称上式为离散型随机变量 X X X的概率分布或分布律
分布律也有用列表方式给出的

X X X x 1 x_{1} x1 x 2 x_{2} x2 x 3 x_{3} x3 ⋯ \cdots x n x_{n} xn ⋯ \cdots
P P P p 1 p_{1} p1 p 2 p_{2} p2 p 3 p_{3} p3 ⋯ \cdots p n p_{n} pn ⋯ \cdots

或者
X ∼ [ x 1 x 2 ⋯ x n ⋯ p 1 p 2 ⋯ p n ⋯ ] X \sim \begin{bmatrix} x_{1} & x_{2} & \cdots & x_{n} & \cdots \\ p_{1} & p_{2} & \cdots & p_{n} & \cdots \end{bmatrix} X[x1p1x2p2xnpn]
这里只给出 X X X可能取值可数无穷多个的情形。不难给出 X X X有限个可能取值的情形

严格来说, P ( A ) P(A) P(A)即用 ( ) () ()括起来的应该是事件, P { X = x k } P \left\{X=x_{k}\right\} P{ X=xk}即用 { } \left\{\right\} { }括起来的应该是随机变量

分布律性质

  • p k ≥ 0 , k = 1 , 2 , ⋯ p_{k}\geq 0,k=1,2,\cdots pk0,k=1,2,
  • ∑ k = 1 ∞ p k = 1 \sum\limits_{k=1 }^{\infty}p_{k}=1 k=1pk=1

二、分布函数

定义:设 X X X是一个随机变量,对于任意实数 x x x,记函数
F ( x ) = P { X ≤ x } , − ∞ < x < + ∞ F(x)=P \left\{X \leq x\right\},-\infty <x < +\infty F(x)=P{ Xx},<x<+
F ( x ) F(x) F(x)为随机变量 X X X的分布函数
分布函数 F ( x )

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值