一、分布律
定义:在样本空间 Ω \Omega Ω上的实值函数 X = X ( ω ) X=X(\omega) X=X(ω),称 X ( ω ) , ω ∈ Ω X(\omega),\omega \in \Omega X(ω),ω∈Ω,称 X ( ω ) X(\omega) X(ω)为随机变量,简记 X X X
注: X ( ω ) X(\omega) X(ω)的定义域是 Ω \Omega Ω,常用 X , Y , Z X,Y,Z X,Y,Z等表示随机变量
定义:如果一个随机变量的可能取值是有限多个或可数无穷多个,则称它为离散型随机变量
定义:设离散型随机变量 X X X的可能取值是 x 1 , x 2 , ⋯ , x n , ⋯ x_{1},x_{2},\cdots,x_{n},\cdots x1,x2,⋯,xn,⋯, X X X取各可能值的概率为
P { X = x k } = p k , k = 1 , 2 , ⋯ P \left\{X=x_{k}\right\}=p_{k},k=1,2,\cdots P{
X=xk}=pk,k=1,2,⋯
称上式为离散型随机变量 X X X的概率分布或分布律
分布律也有用列表方式给出的
X X X | x 1 x_{1} x1 | x 2 x_{2} x2 | x 3 x_{3} x3 | ⋯ \cdots ⋯ | x n x_{n} xn | ⋯ \cdots ⋯ |
---|---|---|---|---|---|---|
P P P | p 1 p_{1} p1 | p 2 p_{2} p2 | p 3 p_{3} p3 | ⋯ \cdots ⋯ | p n p_{n} pn | ⋯ \cdots ⋯ |
或者
X ∼ [ x 1 x 2 ⋯ x n ⋯ p 1 p 2 ⋯ p n ⋯ ] X \sim \begin{bmatrix} x_{1} & x_{2} & \cdots & x_{n} & \cdots \\ p_{1} & p_{2} & \cdots & p_{n} & \cdots \end{bmatrix} X∼[x1p1x2p2⋯⋯xnpn⋯⋯]
这里只给出 X X X可能取值可数无穷多个的情形。不难给出 X X X有限个可能取值的情形
严格来说, P ( A ) P(A) P(A)即用 ( ) () ()括起来的应该是事件, P { X = x k } P \left\{X=x_{k}\right\} P{ X=xk}即用 { } \left\{\right\} { }括起来的应该是随机变量
分布律性质
- p k ≥ 0 , k = 1 , 2 , ⋯ p_{k}\geq 0,k=1,2,\cdots pk≥0,k=1,2,⋯
- ∑ k = 1 ∞ p k = 1 \sum\limits_{k=1 }^{\infty}p_{k}=1 k=1∑∞pk=1
二、分布函数
定义:设 X X X是一个随机变量,对于任意实数 x x x,记函数
F ( x ) = P { X ≤ x } , − ∞ < x < + ∞ F(x)=P \left\{X \leq x\right\},-\infty <x < +\infty F(x)=P{
X≤x},−∞<x<+∞
称 F ( x ) F(x) F(x)为随机变量 X X X的分布函数
分布函数 F ( x )