287矩阵乘法
已知 A = ( 1 2 3 4 5 6 7 8 9 ) , Λ = ( 1 2 − 1 ) A=\begin{pmatrix}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{pmatrix},\Lambda=\begin{pmatrix}1 & & \\ & 2 & \\ & & -1\end{pmatrix} A=⎝ ⎛147258369⎠ ⎞,Λ=⎝ ⎛12−1⎠ ⎞,则 A Λ − Λ A = ( ) A \Lambda-\Lambda A=() AΛ−ΛA=()
本题属于基本计算,不再展示过程
( 0 2 − 6 − 4 0 − 18 14 24 0 ) \begin{pmatrix} 0 & 2 & -6 \\ -4 & 0 & -18 \\ 14 & 24 & 0 \end{pmatrix} ⎝ ⎛0−4142024−6−180⎠ ⎞
可以用最基本的方法,不难
如果两个行列式相乘,其中一个比较简单,可以考虑矩阵的初等变换,例如本题
如果两个都复杂,可以考虑矩阵分块,即 ( 1 2 3 4 5 6 7 8 9 ) ( 2 0 0 0 1 − 1 1 0 1 ) = ( α 1 α 2 α 3 ) ( 2 0 0 0 1 − 1 1 0 1 ) = ( 2 α 1 + α 3 α 2 − α 2 + α 3 ) \begin{aligned} \begin{pmatrix}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{pmatrix}\begin{pmatrix}2 & 0 & 0 \\ 0 & 1 & -1 \\ 1 & 0 & 1\end{pmatrix}&=\begin{pmatrix}\alpha_{1} & \alpha_{2} & \alpha_{3}\end{pmatrix}\begin{pmatrix}2 & 0 & 0 \\ 0 & 1 & -1 \\ 1 & 0 & 1\end{pmatrix}\\&=\begin{pmatrix}2\alpha_{1}+\alpha_{3} & \alpha_{2} & -\alpha_{2}+\alpha_{3}\end{pmatrix}\end{aligned} ⎝ ⎛147258369⎠ ⎞⎝ ⎛2010100−11⎠ ⎞=(α1α2α3)⎝ ⎛2010100−11⎠ ⎞=(2α1+α3α2−α2+α3)
289秩为 1 1 1的矩阵乘法
已知 A = ( 2 − 1 3 4 − 2 6 − 2 1 − 3 ) A=\begin{pmatrix}2 & -1 & 3 \\ 4 & -2 & 6 \\ -2 & 1 & -3\end{pmatrix} A=⎝ ⎛24−2−1−2136−3⎠ ⎞,则 A 10 = ( ) A^{10}=() A10=()
若 α = ( a 1 , a 2 , a 3 ) T , β = ( b 1 , b 2 , b 3 ) T \alpha=(a_{1},a_{2},a_{3})^{T},\beta=(b_{1},b_{2},b_{3})^{T} α=(a1,a2,a3)T,β=(b1,b2,b3)T,设
A = α β T = ( a 1 a 2 a 3 ) ( b 1 b 2 b 3 ) = ( a 1 b 1 a 1 b 2 a 1 b 3 a 2 b 1 a 2 b 2 a 2 b 3 a 3 b 1 a 3 b 2 a 3 b 3 ) B = β T α = ( b 1 b 2 b 3 ) ( a 1 a 2 a 3 ) = a 1 b 1 + a 2 b 2 + a 3 b 3 \begin{aligned} A&=\alpha \beta^{T}=\begin{pmatrix}a_{1} \\ a_{2} \\ a_{3}\end{pmatrix}\begin{pmatrix}b_{1} & b_{2} & b_{3}\end{pmatrix}=\begin{pmatrix}a_{1}b_{1} & a_{1}b_{2} & a_{1}b_{3} \\ a_{2}b_{1} & a_{2}b_{2} & a_{2}b_{3} \\ a_{3}b_{1} & a_{3}b_{2} & a_{3}b_{3}\end{pmatrix}\\B&=\beta^{T}\alpha=\begin{pmatrix}b_{1} & b_{2} & b_{3}\end{pmatrix}\begin{pmatrix}a_{1} \\ a_{2} \\ a_{3}\end{pmatrix}=a_{1}b_{1}+a_{2}b_{2}+a_{3}b_{3}\end{aligned} AB=αβT=⎝ ⎛a1a2a3⎠ ⎞(