一阶微分方程
一阶微分方程一般有五种解法:可分离变量的方程;齐次微分方程;一阶线性微分方程;伯努利方程;全微分方程
如果给定的一阶微分方程不属于上述五种标注形式,首先考虑将 x , y x,y x,y对调,即认定 x x x为 y y y的函数,再判断新方程的类型;或者利用简单的变量代换将其化为上述五种类型之一而求解
微分方程求解
例8:微分方程 y d x + ( x − 3 y 2 ) d y = 0 ydx+(x-3y^{2})dy=0 ydx+(x−3y2)dy=0满足条件 y ∣ x = 1 = 1 y \Big|_{x=1}^{}=1 y∣ ∣x=1=1的解为 y = ( ) y=() y=()
这里用偏积分的方式求解
设 y = f ( x ) y=f(x) y=f(x),即有 g ( x , y ) = 0 g(x,y)=0 g(x,y)=0,依据题意,由于
∂ y ∂ y = 1 , ∂ z − 3 y 2 ∂ x = 1 \frac{\partial y}{\partial y}=1,\frac{\partial z-3y^{2}}{\partial x}=1 ∂y∂y=1,∂x∂z−3y2=1
因此可以用偏积分的方式
d g ( x , y ) = y d x ∫ d g ( x , y ) = ∫ y d x g ( x , y ) = x y + ϕ ( y ) 代入另一个 ∂ g ( x , y ) ∂ y = x + ϕ ′ ( y ) = x − 3 y 2 ϕ ′ ( y ) = − 3 y 2 ϕ ( y ) = − y 3 \begin{aligned} dg(x,y)&=ydx\\ \int\limits_{}dg(x,y)&=\int\limits_{}ydx\\ g(x,y)&=xy+\phi(y)\\ &代入另一个\\ \frac{\partial g(x,y)}{\partial y}&=x+\phi'(y)=x-3y^{2}\\ \phi'(y)&=-3y^{2}\\ \phi(y)&=-y^{3} \end{aligned} dg(x,y)∫dg(x,y)g(x,y)∂y∂g(x,y)ϕ′(y)ϕ(y)=ydx=∫ydx=xy+ϕ(y)代入另一个=x+ϕ′(y)=x−3y2=−3y2=−y3
因此可得
g ( x , y ) = x y − y 3 = 0 g(x,y)=xy-y^{3}=0 g(x,y)=xy−y3=0
有
y = 0 或 y = x y=0或y=\sqrt{x} y=0或y=x
又因为 y ∣ x = 1 = 1 \begin{aligned} y \Big|_{x=1}^{}=1\end{aligned} y