【高等数学基础进阶】常微分方程-补充 & 多元函数微分学-补充

本文深入探讨了一阶微分方程的五种解法,包括可分离变量、齐次、线性、伯努利和全微分方程。同时,阐述了微分方程求解的偏积分方法,并详细讲解了高阶偏导数、全微分、可导性和可微性的概念。此外,还讨论了全微分形式的不变性及隐函数微分法的应用。
摘要由CSDN通过智能技术生成

一阶微分方程

一阶微分方程一般有五种解法:可分离变量的方程;齐次微分方程;一阶线性微分方程;伯努利方程;全微分方程
如果给定的一阶微分方程不属于上述五种标注形式,首先考虑将 x , y x,y x,y对调,即认定 x x x y y y的函数,再判断新方程的类型;或者利用简单的变量代换将其化为上述五种类型之一而求解

微分方程求解

例8:微分方程 y d x + ( x − 3 y 2 ) d y = 0 ydx+(x-3y^{2})dy=0 ydx+(x3y2)dy=0满足条件 y ∣ x = 1 = 1 y \Big|_{x=1}^{}=1 y x=1=1的解为 y = ( ) y=() y=()

这里用偏积分的方式求解

y = f ( x ) y=f(x) y=f(x),即有 g ( x , y ) = 0 g(x,y)=0 g(x,y)=0,依据题意,由于
∂ y ∂ y = 1 , ∂ z − 3 y 2 ∂ x = 1 \frac{\partial y}{\partial y}=1,\frac{\partial z-3y^{2}}{\partial x}=1 yy=1,xz3y2=1
因此可以用偏积分的方式
d g ( x , y ) = y d x ∫ d g ( x , y ) = ∫ y d x g ( x , y ) = x y + ϕ ( y ) 代入另一个 ∂ g ( x , y ) ∂ y = x + ϕ ′ ( y ) = x − 3 y 2 ϕ ′ ( y ) = − 3 y 2 ϕ ( y ) = − y 3 \begin{aligned} dg(x,y)&=ydx\\ \int\limits_{}dg(x,y)&=\int\limits_{}ydx\\ g(x,y)&=xy+\phi(y)\\ &代入另一个\\ \frac{\partial g(x,y)}{\partial y}&=x+\phi'(y)=x-3y^{2}\\ \phi'(y)&=-3y^{2}\\ \phi(y)&=-y^{3} \end{aligned} dg(x,y)dg(x,y)g(x,y)yg(x,y)ϕ(y)ϕ(y)=ydx=ydx=xy+ϕ(y)代入另一个=x+ϕ(y)=x3y2=3y2=y3
因此可得
g ( x , y ) = x y − y 3 = 0 g(x,y)=xy-y^{3}=0 g(x,y)=xyy3=0

y = 0 或 y = x y=0或y=\sqrt{x} y=0y=x
又因为 y ∣ x = 1 = 1 \begin{aligned} y \Big|_{x=1}^{}=1\end{aligned} y

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值