【概率论基础进阶】大数定律和中心极限定理

切比雪夫不等式

切比雪夫不等式:设随机变量 X X X的数学期望 E ( X ) E(X) E(X)和方差 D ( X ) D(X) D(X)存在,则对任意的 ϵ > 0 \epsilon >0 ϵ>0,总有
P { ∣ X − E ( X ) ∣ ≥ ϵ } ≤ D ( X ) ϵ 2 P \left\{|X-E(X)|\geq \epsilon \right\}\leq \frac{D(X)}{\epsilon ^{2}} P{ XE(X)ϵ}ϵ2D(X)
这个不等式称为切比雪夫不等式

例1:设随机变量 X X X的概率密度 f ( x ) = { 2 e − 2 x x > 0 0 x ≤ 0 f(x)=\left\{\begin{aligned}&2e^{-2x}&x>0\\&0&x \leq 0\end{aligned}\right. f(x)={ 2e2x0x>0x0

  • 根据切比雪夫不等式估计 P { X ≥ 3 2 } ≤ A , A = ( ) \begin{aligned} P \left\{X \geq \frac{3}{2}\right\}\leq A,A=()\end{aligned} P{ X23}A,A=()

X ∼ E ( 2 ) X \sim E(2) XE(2),因此
P { X ≥ 3 2 } = P { X − 1 2 ≥ 1 } = P { X − 1 2 ≥ 1 } + P { X − 1 2 ≤ − 1 } ⏟ 0 = P { ∣ X − 1 2 ∣ ≤ 1 } = P { ∣ X − E X ∣ ≥ 1 } ≤ D X 1 2 = 1 4 \begin{aligned} P \left\{X \geq \frac{3}{2}\right\}&=P \left\{X - \frac{1}{2}\geq 1\right\}\\ &=P \left\{X- \frac{1}{2}\geq 1\right\}+\underbrace{P \left\{X- \frac{1}{2}\leq -1\right\}}_{0}\\ &=P \left\{\left|X- \frac{1}{2}\right|\leq 1\right\}\\ &=P \left\{|X-EX| \geq 1\right\}\leq \frac{DX}{1^{2}}=\frac{1}{4} \end{aligned} P{ X23}=P{ X211}=P{ X211}+0 P{ X211}=P{ X21 1}=P{ XEX1}12DX=41

  • 直接计算 P { X ≥ 3 2 } = B , B = ( ) \begin{aligned} P \left\{X \geq \frac{3}{2}\right\}=B,B=()\end{aligned} P{ X23}=B,B=()

根据指数分布
P { X > t } = e λ t , t > 0 P \left\{X>t\right\}=e^{\lambda t},t>0 P{ X>t}=eλt,t>0
因此
P { X ≥ 3 2 } = e − 2 ⋅ 3 2 = e − 3 P \left\{X \geq \frac{3}{2}\right\}=e^{-2 \cdot \frac{3}{2}}=e^{-3} P{ X23}=e223=e3

e − 3 ≈ 0.05 \begin{aligned} e^{-3}\approx 0.05\end{aligned} e30.05,而切比雪夫不等式估计的是 0.25 \begin{aligned} 0.25\end{aligned} 0.25,显然是由一定差距的

例2:设 X X X的密度为 f ( x ) , D X = 1 f(x),DX=1 f(x),DX=1,而 Y Y Y的密度为 f ( − y ) f(-y) f(y),且 X X X Y Y Y的相关系数为 − 1 4 \begin{aligned} - \frac{1}{4}\end{aligned} 41,用切比雪夫不等式估计 P { ∣ X + Y ∣ ≥ 2 } ≤ ( ) P \left\{|X+Y| \geq 2\right\}\leq () P{ X+Y2}()

Z = X + Y Z=X+Y Z=X+Y,由切比雪夫不等式
P { ∣ Z − E Z ∣ ≤ ϵ } ≤ D X ϵ 2 P { ∣ ( X + Y ) − E ( X + Y ) ∣ ≤ ϵ } ≤ D ( X + Y ) ϵ 2 \begin{aligned} P \left\{|Z-EZ|\leq \epsilon \right\}&\leq \frac{DX}{\epsilon ^{2}}\\ P \left\{|(X+Y)-E(X+Y)|\leq \epsilon \right\}&\leq \frac{D(X+Y)}{\epsilon ^{2}} \end{aligned} P{ ZEZϵ}P{ (X+Y)E(X+Y)ϵ}ϵ2DXϵ2D(X+Y)
E Y = ∫ − ∞ + ∞ y f ( − y ) d y = ∫ − ∞ + ∞ ( − y ) f ( − y ) d ( − y ) = − y = t − ∫ − ∞ + ∞ t f ( t ) d t = − E X \begin{aligned} EY&=\int_{-\infty}^{+\infty}yf(-y)dy\\ &=\int_{-\infty}^{+\infty}(-y)f(-y)d(-y)\\ &\overset{-y=t}{=}- \int_{-\infty}^{+\infty}tf(t)dt\\ &=-EX \end{aligned} EY=+yf(y)dy=

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值