Stable Diffusion参数 - 步数、采样方法、提示词引导系数

1 迭代步数

一张图片的生成它需要多次迭代才能达到我们想要的一个效果。
理论上迭代步数越高,那生成的最终的这个图片的效果就越好,它质量更高。

实际在应用的时候迭代步数达到20以上,它的效果在提升的就不是十分明显了,而更多的迭代步数,就意味着更长的时间。

所以我们要综合考虑,图片能达到的效果,以及它的效率。
那么对于大多数模型来说呢,20-30步就已经足够用了。
那如果你想要求图片更加精细的话,你可以尝试30-40步。

去官网下载大模型,那你可以找到这个模型的作者的页面,一般作者会告知你,推荐什么样的参数来使用。比如:

像上面这个模型作者就推荐30,直接按照作者说明的来选择也是可以的,因为作者经过了大量的测试。

可以采用自己的实用设置来查看什么步数适合自己,在一个范围内选择几个数值来批量生成一下
对比一下效果,这样也可以找到,你认为比较合适的迭代步数

 

2 采样方法

Sampler(采样器/采样方法) 选择使用哪种采样器。

  • Euler a(Eular ancestral)可以以较少的步 数产生很大的多样性,不同的步数可能有不同的结果。而非 ancestral 采样器都会产生基本相同的 图像。
  • DPM 相关的采样器通常具有不错的效果,但耗时也会相应增加。
  • Euler 是最简单、最快的 Euler a 更多样,不同步数可以生产出不同的图片。但是太高步数 (>30) 效果不会更好。
  • DDIM 收敛快,但效率相对较低,因为需要很多 step 才能获得好的结果,适合在重绘时候使用。
  • LMS 是 Euler 的衍生,它们使用一种相关但稍有不同的方法(平均过去的几个步骤以提高准确 性)。大概 30 step 可以得到稳定结果
  • PLMS 是 Euler 的衍生,可以更好地处理神经网络结构中的奇异性。
  • DPM2 是一种神奇的方法,它旨在改进 DDIM,减少步骤以获得良好的结果。它需要每一步运行两 次去噪,它的速度大约是 DDIM 的两倍,生图效果也非常好。但是如果你在进行调试提示词的实 验,这个采样器可能会有点慢了。
  • UniPC 效果较好且速度非常快,对平面、卡通的表现较好,推荐使用。

不同采样步数与采样器之间的关系:

3 CFG Scale(提示词相关性)

图像与你的提示的匹配程度。增加这个值将导致图像更接近你的提 示,但它也在一定程度上降低了图像质量。 可以用更多的采样步骤来抵消。过高的 CFG Scale 体现 为粗犷的线条和过锐化的图像。一般开到 7~11。 CFG Scale 与采样器之间的关系 

  • 生成批次 每次生成图像的组数。一次运行生成图像的数量为“批次* 批次数量”。
  • 每批数量 同时生成多少个图像。增加这个值可以提高性能,但也需要更多的显存。大的 Batch Size 需要消耗巨量显存。若没有超过 12G 的显存,请保持为 1。
  • 尺寸 指定图像的长宽。出图尺寸太宽时,图中可能会出现多个主体。1024 之上的尺寸可能会出现 不理想的结果,推荐使用小尺寸分辨率+高清修复(Hires fix)。
  • 种子 种子决定模型在生成图片时涉及的所有随机性,它初始化了 Diffusion 算法起点的初始值。

理论上,在应用完全相同参数(如 Step、CFG、Seed、prompts)的情况下,生产的图片应当完全相同。

 

通过勾选 "Hires. fix " 来启用。 默认情况下,文生图在高分辨率下会生成非常混沌的图像。如果使用 高清修复,会型首先按照指定的尺寸生成一张图片,然后通过放大算法将图片分辨率扩大,以实现高清 大图效果。最终尺寸为(原分辨率*缩放系数 Upscale by)。

  • 放大算法中,Latent 在许多情况下效果不错,但重绘幅度小于 0.5 后就不甚理想。ESRGAN_4x、 SwinR 4x 对 0.5 以下的重绘幅度有较好支持。
  • Hires step 表示在进行这一步时计算的步数。
  • Denoising strength 字面翻译是降噪强度,表现为最后生成图片对原始输入图像内容的变化程度。 该值越高,放大后图像就比放大前图像差别越大。低 denoising 意味着修正原图,高 denoising 就 和原图就没有大的相关性了。一般来讲阈值是 0.7 左右,超过 0.7 和原图基本上无关,0.3 以下就 是稍微改一些。实际执行中,具体的执行步骤为 Denoising strength * Sampling Steps。
  • 面部修复 修复画面中人物的面部,但是非写实风格的人物开启面部修复可能导致面部崩坏。 

4 面部修复

如果生成真人的话,建议把面部修复打开,这样能让你的呃生成的图片,面部更加的理想,平铺图不用考虑高分辨率修复,这个是在我们后期放大图片的时候可以用的

5 宽和高

一般来说我们生成图片的时候选择,512x512比较安全,还有一个就是你可以参考作者的建议
一般作者他训练大模型的时候,他也会有一个倾向的图片的比例,所以根据作者的建议,你可以按照他提供的这个分辨率来生成你的图。

6 提示词引导系数

一般我们选择7是最多的,对于大多数模型来说,选择7它都是比较啊保险的一个选项。
一般来说不应该超过10以上,你可以尝试,超过10以上的话,其实他就不会说,忠实的按照你的提示词来生成了,可能会出现一些奇怪的物体。
那么如果太小的话呢?
可能画面跟你的提示词的相关性,又不够一般来说我们选择7比较保险,那么按照我当前的模型
根据作者的建议呢,他是建议5

 

Stable Diffusion中生成一张年轻女孩的艺术风格8k壁纸并获得超精细效果,需要对模型进行一些特定的配置和优化。首先,你需要确定你的主题是“年轻女孩的艺术风格”,并且你希望达到的分辨率是8k。你可以使用“young beautiful girl”作为正向提示词,并且加入“official art”和“unity 8k wallpaper”以指示高分辨率和艺术品质的需求。 参考资源链接:[Stable Diffusion 图片生成教程:用一句话创造艺术](https://wenku.csdn.net/doc/25suot0wrh?spm=1055.2569.3001.10343) 在技术参数设置方面,你可以选择迭代步数为30,以确保生成过程中模型有足够的计算次数来精确细节。为了获得超精细的图像,可能需要尝试不同的采样方法,例如DPM++2MKarras,它是一种较为先进的采样方法,可以在细节和速度之间取得良好的平衡。 此外,图像的宽度和高度设置为768x512,然后在后处理阶段将图像等比例放大到8k分辨率。总批次数和单批数量设置为1和4,允许你在短时间内生成多张图片以比较效果。 使用提示词引导系数为7,这会强化提示词对图像风格的影响。随机数种子可以设为任意值,用于实验时的可重复性和变化性。如果你需要二次元风格,可以选择适合此风格的模型,如rev Animated、breakdro和anything-v5-PrtRE。 最后,结合VAE模型为vae-ft-mse-840000-ema-pruned.safetensors,并设置clip终止层数为2,以进一步提升图像的风格和清晰度。运行程序后,Stable Diffusion将根据你的配置生成高分辨率的年轻女孩艺术风格壁纸。 推荐查看《Stable Diffusion 图片生成教程:用一句话创造艺术》来获取更多关于如何操作Stable Diffusion的详细指导和实例,这份教程将帮助你深入理解并掌握生成过程中的各种技巧。 参考资源链接:[Stable Diffusion 图片生成教程:用一句话创造艺术](https://wenku.csdn.net/doc/25suot0wrh?spm=1055.2569.3001.10343)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

流光影下

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值