洛谷B2146 Hermite 多项式

Hermite 多项式

题目描述

求 Hermite 多项式的值。

h n ( x ) = { 1 , n = 0 2 x , n = 1 2 x h n − 1 ( x ) − 2 ( n − 1 ) h n − 2 ( x ) , n > 1 h_n(x)=\left\{ \begin{aligned} 1&,&n=0\\ 2x&,&n=1\\ 2xh_{n-1}(x)-2(n-1)h_{n-2}(x)&,& n>1 \end{aligned} \right. hn(x)= 12x2xhn1(x)2(n1)hn2(x)n=0n=1n>1

对给定的 x x x 和正整数 n n n,求多项式的值。

输入格式

输入 n n n x x x

输出格式

求多项式的值。

样例 #1

样例输入 #1

1 2

样例输出 #1

4

提示

( n ≤ 8 , x ≤ 8 ) (n \le 8,x \le 8) (n8x8)

#include<stdio.h>//CSDN:旺旺的碎冰冰~
#include<string.h>
#include<stdlib.h>
#include<math.h>
#include<stdbool.h>//该头文件常用于质数的问题
int Hermite(int n,int x){
	if(n==0){
		return 1;
	}
	else if(n==1){
		return 2*x;
	}
	else{
		return 2*x*Hermite(n-1,x)-2*(n-1)*Hermite(n-2,x);
	}
} //按照题目中所给定义函数即可
int main(){
	int n,x;
	scanf("%d%d",&n,&x);
	printf("%d\n",Hermite(n,x));
	return 0;//CSDN:旺旺的碎冰冰~ 
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

旺旺的碎冰冰~

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值