Hermite 多项式
题目描述
求 Hermite 多项式的值。
h n ( x ) = { 1 , n = 0 2 x , n = 1 2 x h n − 1 ( x ) − 2 ( n − 1 ) h n − 2 ( x ) , n > 1 h_n(x)=\left\{ \begin{aligned} 1&,&n=0\\ 2x&,&n=1\\ 2xh_{n-1}(x)-2(n-1)h_{n-2}(x)&,& n>1 \end{aligned} \right. hn(x)=⎩ ⎨ ⎧12x2xhn−1(x)−2(n−1)hn−2(x),,,n=0n=1n>1
对给定的 x x x 和正整数 n n n,求多项式的值。
输入格式
输入 n n n 和 x x x 。
输出格式
求多项式的值。
样例 #1
样例输入 #1
1 2
样例输出 #1
4
提示
( n ≤ 8 , x ≤ 8 ) (n \le 8,x \le 8) (n≤8,x≤8)
#include<stdio.h>//CSDN:旺旺的碎冰冰~
#include<string.h>
#include<stdlib.h>
#include<math.h>
#include<stdbool.h>//该头文件常用于质数的问题
int Hermite(int n,int x){
if(n==0){
return 1;
}
else if(n==1){
return 2*x;
}
else{
return 2*x*Hermite(n-1,x)-2*(n-1)*Hermite(n-2,x);
}
} //按照题目中所给定义函数即可
int main(){
int n,x;
scanf("%d%d",&n,&x);
printf("%d\n",Hermite(n,x));
return 0;//CSDN:旺旺的碎冰冰~
}