ccc-机器学习算法基础-6

1.模型的保存与加载API

保存:

from sklearn.datasets import load_boston
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.externals import joblib

def linear():
    lb = load_boston()
    x_train, x_test, y_train, y_test = train_test_split(lb.data, lb.target, test_size=0.25)
    # 由于x y的特征个数不同,要分别标准化
    std_x = StandardScaler()
    x_train = std_x.fit_transform(x_train)
    x_test = std_x.transform(x_test)
    std_y = StandardScaler()
    y_train = std_y.fit_transform(y_train.reshape(-1, 1))
    y_test = std_y.transform(y_test.reshape(-1, 1))
    # 正规方程求解
    lr = LinearRegression()
    lr.fit(x_train,y_train)
    #保存模型
    joblib.dump(lr,'./test.pkl')
    return None

if __name__ == '__main__':
    linear()

加载:

from sklearn.datasets import load_boston
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.externals import joblib

def linear():
    lb = load_boston()
    x_train, x_test, y_train, y_test = train_test_split(lb.data, lb.target, test_size=0.25)
    # 由于x y的特征个数不同,要分别标准化
    std_x = StandardScaler()
    x_train = std_x.fit_transform(x_train)
    x_test = std_x.transform(x_test)
    std_y = StandardScaler()
    y_train = std_y.fit_transform(y_train.reshape(-1, 1))
    y_test = std_y.transform(y_test.reshape(-1, 1))
    #模型导入
    model = joblib.load("./test.pkl")
    # 将标准化后的数据转换为原始数据
    y_predict = std_y.inverse_transform(model.predict(x_test))
    print("预测结果:",y_predict)
    print("正规方程的均方误差:",mean_squared_error(std_y.inverse_transform(y_test),y_predict))
    return None

if __name__ == '__main__':
    linear()
说明:
  • Joblib是一组用于在Python中提供轻量级流水线的工具
  • Joblib可以将模型保存到磁盘并可在必要时重新运行
2.逻辑回归概述

原理:通过sigmoid函数 σ ( x ) = 1 1 + e − x \sigma (x)=\frac{1}{1+e^{-x}} σ(x)=1+ex1将输入过的数据映射到0~1之间的数字,判断数字是否超过阈值为其打上标签
一般假设函数为:

h ( x i ) = 1 1 + e − ( w T x i + b ) h(\textup{x}^{i})=\frac{1}{1+e^{-(\textup{w}^{T}\textup{x}^{i}+b)}} h(xi)=1+e(wTxi+b)1
x i x^{i} xi是测试集第i个数据, w w w是p维列向量,和b都为待求参数;

逻辑回归的损失函数-对数似然损失:
在这里插入图片描述
说明:

  • 损失函数是体现“预测值”和“真实值”,相似程度的函数
  • 损失函数越小,模型越好
  • 可能有多个局部最小值

完整的损失函数:
在这里插入图片描述
针对多局部最小值的优化方式(不能完全解决问题)

  • 多次随机初始化,比较最小结果
  • 调整学习率
3.逻辑回归 API

良/恶性乳腺癌种数据分类:
数据描述:
在这里插入图片描述

from sklearn.metrics import classification_report
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LogisticRegression
import pandas as pd
import numpy as np

def logistic():
    # 构造列标签
    column = ['Sample code number','Clump Thickness', 'Uniformity of Cell Size','Uniformity of Cell Shape','Marginal Adhesion','Single Epithelial Cell Size','Bare Nuclei','Bland Chromatin','Normal Nucleoli','Mitoses','Class']
    data = pd.read_csv("./breast-cancer-wisconsin.data",names=column)
    # 缺失值处理
    data = data.replace(to_replace='?',value=np.nan)
    data = data.dropna()
    # 数据分割
    x_train, x_test, y_train, y_test = train_test_split(data[column[1:10]],data[column[10]],test_size=0.25)
    # 标准化
    std = StandardScaler()
    x_train = std.fit_transform(x_train)
    x_test = std.transform(x_test)
    # 逻辑回归预测
    lg = LogisticRegression(C=1.0)
    lg.fit(x_train, y_train)
    print(lg.coef_)
    y_predict = lg.predict(x_test)
    print("准确率:",lg.score(x_test,y_test))
    print("召回率:",classification_report(y_test,y_predict,labels=[2,4],target_names=["良性","恶性"]))
    return None

if __name__== "__main__":
    logistic()

在这里插入图片描述

说明:
  • 不适合解决多分类问题
  • 简单,速度快
  • 生成模型与判别模型对比
  1. 生成模型一般以概率方式描述数据的产生方式,通过对模型采样就可以产生数据。
  2. 判别模型对数据之间的映射关系建模,而不考虑数据本身是如何生成的。模型自身并不能产生数据。
  3. 生成模型对数据本身建模,更基础。判别模型只考虑输入和输出之间的关系,更直接地面向问题。如果希望用生成模型完成判定模型的任务,一般需要额外的步骤。
    在这里插入图片描述
4.K-means 算法步骤

1、随机设置K个特征空间内的点作为初始的聚类中心
2、对于其他每个点计算到K个中心的距离,未知的点选择最近的一个聚类中心点作为标记类别
3、接着对着标记的聚类中心之后,重新计算出每个聚类的新中心点(平均值)
4、如果计算得出的新中心点与原中心点一样,那么结束,否则重新进行第二步

5.KMeans API
步骤一:库和数据的导入
import pandas as pd
from sklearn.decomposition import PCA
from sklearn.cluster import KMeans
import matplotlib.pyplot as plt
from sklearn.metrics import silhouette_score
prior = pd.read_csv("./data/order_products__prior.csv")
products = pd.read_csv("./data/products.csv")
order = pd.read_csv("./data/orders.csv")
aisles = pd.read_csv("./data/aisles.csv")
步骤二:合并表项,方便操作
_mg = pd.merge(prior,products,on=['product_id','product_id'])
_mg = pd.merge(_mg,order,on=['order_id','order_id'])
mt = pd.merge(_mg,aisles,on=['aisle_id','aisle_id'])

在这里插入图片描述

步骤三:交叉表分组
cross = pd.crosstab(mt['user_id'],mt['aisle'])

在这里插入图片描述

步骤四:主成分分析,并且减少样本数量
pca = PCA(n_components=0.9)
data = pca.fit_transform(cross)
x = data[:900]
x.shape

在这里插入图片描述

步骤五:调用kmeansAPI进行聚类
km = KMeans(n_clusters=4)
predict = km.predict(x)
predict

在这里插入图片描述

步骤六:图形绘制
plt.figure(figsize=(10,10))
colored = ['orange','green','blue','purple']
colr = [colored[i] for i in predict]
plt.scatter(x[:, 1],x[:, 20],color =colr)
plt.show()

在这里插入图片描述

步骤七:效果评估
silhouette_score(x,predict)

在这里插入图片描述

说明:

1.聚类评估标准:轮廓系数
在这里插入图片描述

  • 对于每个点i 为已聚类数据中的样本 ,bi 为i 到其它族群的所有样本的平均距离,ai 为i 到本身簇的距离平均值
  • 轮廓系数的值是介于 [-1,1] ,越趋近于1代表内聚度和分离度都相对较优

2.Kmeans API参数
在这里插入图片描述
3.silhouette_score 参数
在这里插入图片描述
4.Kmeans的特点

  • 容易收敛到局部最优解(多次聚类)
  • 采用迭代式算法,直观易懂并且非常实用
  • 需要预先设定簇的数量(k-means++解决)
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值