ccc-Classification-李宏毅(4)

Classification 概念

本质是找一个函数,输入对象X后输出其所属类别Class,实际应用如下:
在这里插入图片描述

Example Application

以神奇宝贝属性分类(Water/79 和 Normal/61)进行推进,function中input数据来源如下:
在这里插入图片描述

How to do Classification

数据通过函数中计算后返回判断类别结果,loss函数返回训练集汇总出现的错误,然后选择最优模型
idea图如下(二分类):
在这里插入图片描述

Why not Regesssion

在这里插入图片描述
存在的问题:

  • 回归用一条线,但问题是非常正确的样本将分界线过度纠正导致效果不好
  • Regression返回的是连续值,classification返回离散的点,性质不同
Probability from Class - Feature

只考虑Defense和SP Defence这两种feature,并认为样本点符合高斯分布(正态分布)注意海龟不在训练集中
在这里插入图片描述
高斯分布的简单介绍

公式如下:
f μ , Σ ( x ) = 1 ( 2 π ) D / 2 1 ∣ Σ ∣ 1 / 2 e x p { − 1 2 ( x − μ ) T Σ − 1 ( x − μ ) } f_{\mu,\Sigma}(x)=\frac{1}{(2\pi)^{D/2}}\frac{1}{|\Sigma|^{1/2}}exp\{-\frac{1}{2}(x-\mu)^T\Sigma^{-1}(x-\mu)\} fμ,Σ(x)=(2π)D/21∣Σ1/21exp{21(xμ)TΣ1(xμ)}
其中, μ \mu μ表示均值, Σ \Sigma Σ表示协方差(covariance),它们对于分布的影响如下:

  • 不同的 μ \mu μ相同的 Σ \Sigma Σ概率分布最高点不同
  • 相同 μ \mu μ不同的 Σ \Sigma Σ,概率最高点相同,分散程度不同
    在这里插入图片描述
Probability from Class

将海龟的数据代入由之前的79个资料形成的高斯分布中就可以估测它所属类别的概率。通过极大似然函数寻找这个高斯分布:

在这里插入图片描述
分别计算两种类别最佳高斯分布参数:
在这里插入图片描述
将这些得到的数据进行代入分类公式(设定阈值0.5):
在这里插入图片描述

How’s the results?

在这里插入图片描述
左图是训练集右图是测试集,结果47% accuracy,效果非常差。即使使用所有的6种数据集accuracy也仅仅54%。

Modifying Model

考虑可能是参数过多导致过拟合,比较好的解决方式是公用一个covariance matrix,因为它在样本数量较多时增长非常迅速(与feature size的平方成正比)然后造成过拟合,使用相同协方差过程如下:
在这里插入图片描述
在这里插入图片描述
效果得到了显著提升,并且边界变成了线性的。为什么?鬼知道!

Three Steps

在这里插入图片描述

Probability Distribution

在这里插入图片描述
sigmoid function:
在这里插入图片描述在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
上面推导解释为何分类的边界线变成了线性的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值