【LORA微调的A初始化为0,B不为零的解释】

假设你有一个模型,其中 ( h = w 0 ⋅ x + B ⋅ A ⋅ x h = w_0 \cdot x + B \cdot A \cdot x h=w0x+BAx),这里 ( w 0 w_0 w0 ) 是权重,( B ) 和 ( A ) 是矩阵,
( x x x ) 是输入向量。这样的表达式在神经网络中是常见的,尤其是当你考虑到多层结构和线性变换时。对这样的模型进行梯度计算,可以分解为对每个参数的偏导数。

前提

首先,我们定义模型输出:

h = w 0 ⋅ x + B ⋅ A ⋅ x h = w_0 \cdot x + B \cdot A \cdot x h=w0x+BAx

我们假设损失函数 ( L ) 依然使用均方误差,用于评估预测 ( h ) 和真实目标值 ( y ) 之间的差异:
L = 1 2 ( h − y ) 2 L = \frac{1}{2} (h - y)^2 L=21(hy)2

梯度计算

  1. 对 ( w 0 w_0 w0 ) 的偏导:

    • 使用链式法则:
      ∂ L ∂ w 0 = ∂ L ∂ h ⋅ ∂ h ∂ w 0 \frac{\partial L}{\partial w_0} = \frac{\partial L}{\partial h} \cdot \frac{\partial h}{\partial w_0} w0L=hLw0h
    • 其中:
      ∂ L ∂ h = ( h − y ) \frac{\partial L}{\partial h} = (h - y) hL=(hy)
      ∂ h ∂ w 0 = x \frac{\partial h}{\partial w_0} = x w0h=x
    • 所以:
      ∂ L ∂ w 0 = ( h − y ) ⋅ x \frac{\partial L}{\partial w_0} = (h - y) \cdot x w0L=(hy)x
  2. 对矩阵 ( B ) 的偏导:

    • 同样使用链式法则:
      ∂ L ∂ B = ∂ L ∂ h ⋅ ∂ h ∂ B \frac{\partial L}{\partial B} = \frac{\partial L}{\partial h} \cdot \frac{\partial h}{\partial B} BL=hLBh
    • 其中 ( \frac{\partial h}{\partial B} ) 需要使用矩阵乘法的导数规则:
      ∂ h ∂ B = ( A ⋅ x ) ⊤ \frac{\partial h}{\partial B} = (A \cdot x)^\top Bh=(Ax)
    • 所以:
      ∂ L ∂ B = ( h − y ) ⋅ ( A ⋅ x ) ⊤ \frac{\partial L}{\partial B} = (h - y) \cdot (A \cdot x)^\top BL=(hy)(Ax)
  3. 对矩阵 ( A ) 的偏导:

    • 链式法则:
      ∂ L ∂ A = ∂ L ∂ h ⋅ ∂ h ∂ A \frac{\partial L}{\partial A} = \frac{\partial L}{\partial h} \cdot \frac{\partial h}{\partial A} AL=hLAh
    • 计算 ( \frac{\partial h}{\partial A} ) 也需要用到矩阵导数,特别是矩阵相乘的情况:
      ∂ h ∂ A = B ⊤ ⋅ x \frac{\partial h}{\partial A} = B^\top \cdot x Ah=Bx
    • 所以:
      ∂ L ∂ A = B ⊤ ⋅ x ⋅ ( h − y ) \frac{\partial L}{\partial A} = B^\top \cdot x \cdot (h - y) AL=Bx(hy)

模型参数更新

利用梯度下降法更新每个参数:

  • ( w 0 w_0 w0 ) 的更新:
    [ w 0 = w 0 − η ⋅ ∂ L ∂ w 0 w_0 = w_0 - \eta \cdot \frac{\partial L}{\partial w_0} w0=w0ηw0L ]
  • ( B B B) 的更新:
    [ B = B − η ⋅ ∂ L ∂ B B = B - \eta \cdot \frac{\partial L}{\partial B} B=BηBL]
  • ( A A A ) 的更新:
    [ A = A − η ⋅ ∂ L ∂ A A = A - \eta \cdot \frac{\partial L}{\partial A} A=AηAL]

这些更新将使得模型在迭代过程中逐步减少预测误差,最终学习到将输入 ( x x x ) 映射到输出 ( y y y ) 的最佳方式。每次迭代都基于当前数据点或数据批次计算梯度,并更新参数,以最小化整个训练集上的损失。

本质是
在这里插入图片描述

【A股温度计】www.agwdj.com 镜像版程序V1.0说明 •通过数据可视化技术,将复杂的A股市场数据转化为直观的图形界面,帮助投资者快速把握市场脉搏。 【核心功能】 •全景视角:突破信息碎片化局限,快速定位涨跌分布,一眼锁定今日热点板块 •板块排序:基于申万行业分类标准,对31个一级行业和131个二级行业实时动态排序 •硬件适配:智能适配不同分辨率屏幕,4K以上屏幕显示信息更多(视觉更佳) •智能缩放:A股全图让大A市场5000+个股同屏显示(支持鼠标滚轮及触摸设备5级缩放) 【三秒原则】 •三秒看懂:通过精心设计的视觉图形,让用户在三秒内看清市场整体状况 •三秒定位:智能算法让大成交额个股和热点板块自动靠前,快速定位机会 •三秒操作:极简的界面,让用户减少操作 【使用场景】 •盘前准备:快速了解隔夜市场变化,制定当日策略 •盘中监控:实时跟踪市场动向,及时把握当日机会 •盘后复盘:全面分析当日市场表现,总结经验教训 【适合人群】 •个人用户:快速了解市场整体趋势变化,辅助决策 •专业人员:获取每天市场的数据云图支持研究工作 •金融机构:作为投研系统的可视化补充组件 •财经媒体:制作专业市场分析图表和报道 【市场切换】 •默认加载"A股全图",可切换单独显示的类型如下: •上证A股/深证A股/北证A股/创业板/科创板/ST板块/可转债/ETF 【程序优势】 •运行环境:纯PHP运行(无需安装任何数据库) •数据更新:实时同步→A股温度计→www.agwdj.com •显示优化:自动适配8K/4K/2K/1080P等不同分辨率的屏幕 •设备兼容:对市面上主流的设备及浏览器做了适配(检测到手机/平板/电视等默认Chrome/Firefox/Edge内核过低的情况会自动提示) 【其他说明】 •A股温度计程序演示网址:https://www.agwdj.com
### 关于 LoRA 技术的初始发布及相关信息 LoRA(Low-Rank Adaptation)是一种用于优化大语言模型微调的技术,旨在通过引入低秩矩阵分解来减少参数量并提高计算效率。关于 LoRA 的初始发布及其相关信息,可以从以下几个方面进行探讨: #### 1. **LoRA 的核心概念** LoRA 是一种高效的微调方法,主要通过在预训练模型的基础上增加两个低秩矩阵 \( A \) 和 \( B \),从而实现对原始模型权重的有效调整[^4]。其中,\( A \) 控制和调节权重更新的传递,而 \( B \) 提供潜在的调整信息。 #### 2. **LoRA 初始化的研究进展** 研究表明,LoRA初始化方式对其性能有显著影响。例如,在某些情况下,将基础模型权重初始化可能会引发问题,但 LoRA 的矩阵 \( B \) 可以安全地初始化。此外,研究还表明,通过对 LoRA 进行特定的初始化改进(如 LoRA-GA),可以在不改变架构的情况下提升收敛速度和最终性能[^1]。 #### 3. **LoRA 技术的应用前景** 除了理论上的进步,LoRA 技术也被广泛应用于实际场景中。特别是在物联网领域,LoRa 技术因其远距离、低功耗的特点备受关注。未来的展望显示,LoRa 将继续扩展其应用范围,并可能与更多先进技术相结合,进一步推动行业发展[^3]。 #### 4. **官方公告和技术文档** 目前,有关 LoRA 技术的具体初始发布信息并未明确提及,但从现有资料来看,该技术的主要研究成果多集中于学术论文和开源项目中。例如,《The Impact of Initialization on LoRA Finetuning Dynamics》深入分析了不同初始化策略对 LoRA 微调动态的影响[^2]。这些资源可作为理解 LoRA 初始设计的重要参考。 --- ### 示例代码:如何初始化 LoRA 参数 以下是一个简单的 Python 实现示例,展示如何初始化 LoRA 参数中的矩阵 \( A \) 和 \( B \): ```python import torch.nn as nn class LoRALayer(nn.Module): def __init__(self, in_features, out_features, rank=4): super(LoRALayer, self).__init__() self.rank = rank # 初始化矩阵 A 和 B self.A = nn.Parameter(torch.randn(out_features, rank)) # 随机初始化 self.B = nn.Parameter(torch.zeros(rank, in_features)) # 初始化 def forward(self, x): delta_W = self.A @ self.B # 计算增量权重 return x + delta_W(x) ``` --- ### 总结 综上所述,虽然尚未找到具体的 LoRA 技术官方公告,但已有大量研究揭示了其核心技术细节和发展趋势。从现有的文献可以看出,LoRA 不仅具备高效性和灵活性,还在不断演进以满足更复杂的需求。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Ai君臣

学会的就要教给人

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值