基础模型权重初始化为0会导致以下问题,LoRA的B可以初始化为0

基础模型权重初始化为0会导致以下问题:

  1. 对称性问题:如果所有的权重都初始化为0,那么每个神经元在前向传播中的作用都是相同的。不同的神经元将会计算出相同的输出,从而失去它们的独立性。这种对称性问题会导致网络无法学习有效的特征。

  2. 梯度相同:在反向传播中,所有神经元的梯度将会相同。因为它们的权重和输出都是一致的,导致梯度更新的方向和步幅也一样,这样的更新无法打破对称性,网络无法有效训练。

  3. 表达能力受限:初始化为0的权重使得网络在训练初期难以捕捉到输入数据中的不同特征。网络缺乏多样性,从而限制了它的表达能力,影响模型的学习效果。

为了解决这些问题,通常采用随机初始化方法(如Xavier初始化或He初始化),以打破对称性并加速收敛。

这是一个很好的问题!让我解释为什么两种情况不同:

  1. 基础模型权重不能初始化为0的原因
class NeuralNetwork(nn.Module):
    def __init__(self):
        self.layer = nn.Linear(input_dim, output_dim)
        # 如果权重都是0
        if all_weights_zero:
            # 前向传播
            output = weight @ input = 0 @ input = 0
            # 反向传播
            gradient = all_same # 所有神经元学到相同的东西

问题:

  • 所有神经元输出相同的值(0)
  • 所有神经元会得到相同的梯度
  • 网络失去了表达能力
  • 对称性问题(symmetry problem)
  1. 为什么LoRA的B可以初始化为0
# LoRA的完整更新公式
final_weight = original_weight + (lora_B @ lora_A) * scaling

# 当B=0时
update = (0 @ lora_A) * scaling = 0
final_weight = original_weight + 0 = original_weight

关键区别:

  • LoRA是在已有的预训练权重基础上的增量更新
  • 原始模型权重保持不变,提供了非零基础
  • A矩阵是随机初始化的,提供了梯度的多样性
  1. 具体示例
# 假设我们有一个预训练好的注意力层
pretrained_weight = torch.randn(512, 512)  # 非零预训练权重

# LoRA设置
r = 4
lora_A = torch.randn(r, 512) / math.sqrt(r)  # 随机初始化
lora_B = torch.zeros(512, r)                 # 零初始化

# 前向传播
def forward(x):
    # 原始路径
    original_output = x @ pretrained_weight.T  # 非零输出
    
    # LoRA路径
    lora_output = x @ lora_A.T @ lora_B.T * scaling  # 初始为0
    
    # 最终输出
    return original_output + lora_output  # = original_output (初始时)
  1. 梯度流动分析
# 反向传播时
def backward_analysis():
    # 原始权重(冻结)不参与梯度更新
    
    # B的梯度
    grad_B = grad_output @ lora_A  # 非零,因为A是随机的
    
    # A的梯度
    grad_A = lora_B.T @ grad_output  # 初始为0
    
    # 但是由于B会立即更新,下一步A就能得到非零梯度
    B = B + learning_rate * grad_B  # B变为非零
    # 下一步迭代,A就能得到有效梯度
  1. 为什么这样设计是好的
# 训练过程分析
def training_process():
    # 第1步:完全保持原始模型行为
    output_step1 = original_weight
    
    # 第2步:开始学习差异
    B_step2 = small_updates  # 基于任务梯度
    output_step2 = original_weight + small_adaptation
    
    # 后续步骤:逐渐适应新任务
    B_stepN = learned_updates
    output_stepN = original_weight + task_specific_adaptation

总结:

  1. 基础模型权重初始化为0会导致:

    • 对称性问题
    • 梯度相同
    • 表达能力受限
  2. LoRA的B初始化为0是合理的因为:

    • 有预训练权重作为基础
    • A矩阵提供梯度多样性
    • 允许平滑起步
    • 不会限制模型的学习能力
      从本质上看,LoRA 中矩阵 ( A ) 和矩阵 ( B ) 的角色可以理解为 对权重更新信号的分解和传递,而这两者的本质作用在于帮助模型进行高效的低秩微调。下面我来解释 LoRA 中 ( A ) 和 ( B ) 本质上的功能。

1. LoRA 的本质:降低权重调整的自由度

LoRA 的设计思想是通过低秩矩阵分解来降低原始模型的权重调整复杂度,从而减少训练中的参数量。模型的原始权重矩阵 ( W_0 ) 通常是高维的,直接微调整个权重矩阵的计算开销很大。LoRA 的核心思想是将这个高维矩阵分解为两个低秩矩阵 ( A ) 和 ( B ),即:

[
W = W_0 + BA
]

其中:

  • ( W_0 ) 是原始模型的权重矩阵,
  • ( B ) 和 ( A ) 是用于低秩分解的矩阵,
  • ( BA ) 是一个低秩调整,用于微调模型。

通过引入低秩矩阵 ( B ) 和 ( A ),LoRA 实际上限制了模型在微调过程中所能使用的自由度,避免了调整所有参数的高计算量。这就是 LoRA 的本质:用低秩矩阵的乘积来表示复杂的权重变化,从而减少训练开销。

2. 矩阵 ( A ) 和 ( B ) 的本质:分解和传递信号

矩阵 ( A ) 的本质:信号的传播和调节

矩阵 ( A ) 本质上是将微调信号从潜在的调整空间传递到实际权重空间的工具。它控制了权重调整的传播路径和强度。也就是说,LoRA 在计算权重调整时,( A ) 决定了如何组合和传递从 ( B ) 中获得的信息。

  • 如果 ( A ) 是零矩阵,信号就无法传递,模型的权重不会有任何更新。
  • 如果 ( A ) 是非零矩阵,信号就可以有效地通过 ( A ),并结合 ( B ) 来调整权重。

因此,( A ) 在 LoRA 中的本质作用是控制和调节权重更新的传递,类似于调节器或开关。

矩阵 ( B ) 的本质:提供潜在的调整信息

矩阵 ( B ) 则本质上是权重调整的潜在方向和信息源。它包含了潜在的权重变化信息,作为权重微调的基础部分。通过矩阵 ( B ) 的更新,模型能够学习到合适的权重调整方向。

  • ( B ) 初始化为0意味着调整信息还没有准备好,需要通过训练逐渐学习。
  • ( B ) 非零则意味着已经有初步的调整方向,模型能够依赖这些信息进行权重更新。

3. 为什么 ( A ) 是关键?

在 LoRA 中,( A ) 是控制信号传递的关键。如果没有 ( A ) 的参与(即 ( A ) 为0),权重更新的调整部分就不会有任何影响。即使 ( B ) 有潜在的调整方向,只有通过 ( A ) 才能有效传递到模型的权重中。矩阵 ( A ) 本质上是“开启”调整信号的关键步骤,因此将其比作水龙头的开关是恰当的,因为它控制了是否释放权重调整信号。

总结:

  • LoRA 的本质是通过低秩矩阵分解来减少模型微调的复杂度。
  • 矩阵 ( A ) 的本质作用是调节和传递调整信号,它决定了权重微调是否以及如何发生。
  • 矩阵 ( B ) 的本质是提供潜在的权重调整信息,作为微调的基础。

LoRA 通过 ( A ) 和 ( B ) 的合作,完成了对模型权重的高效微调,这就是它降低训练成本的核心机制。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Ai君臣

学会的就要教给人

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值